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It has been long proposed that the 
osteocyte network continually compares 
present mechanical strains to usual 
levels of strain, and triggers signals to 
osteoclasts or osteoblasts resulting in 
bone loss or gain, as needed. Whereas 
physiological levels of mechanical 
stimulation maintain bone mass, levels of 
strain that are too high or too low induce 
bone resorption. One mechanism by 
which osteocytes may trigger bone 
resorption is by undergoing apoptosis. 
Previous evidence demonstrated that 
either low or high levels of mechanical 
loading lead to increased prevalence of 
osteocyte apoptosis, which temporally 
precedes and is spatially associated with 
osteoclast recruitment and the 
subsequent increase in bone resorption 
(1;2). However, a direct demonstration of 
a cause and effect relationship between 
osteocyte death and bone resorption was 
lacking. Using a transgenic mouse model 
of inducible osteocyte ablation, Tatsumi 
et al. (3) show that osteocyte apoptosis is 
sufficient to trigger osteoclast 
recruitment and bone resorption. 
Moreover, the normal osteoclastogenic 
response to unloading is missing in 
bones from osteocyte-depleted mice, 
confirming that osteocytes are 
indispensable for the skeletal adaptation 
to weightlessness. Because osteocyte 
apoptosis is inhibited not only by 
mechanical stimulation but also by 
estrogens and bisphosphonates, the 
findings of Tatsumi et al. raise the 
intriguing possibility that preservation of 
osteocyte viability contributes to the anti-
remodeling properties of these agents.  

Regulation of the Executive Cells of Bone 
Remodeling by Osteocytes – the 
Sclerostin Paradigm 

 
Osteocytes are ideally positioned to be the 
means by which bone adapts in response to 
mechanical stimuli. Compared to 
osteoblasts and osteoclasts, which are 
present on bone only transiently, in low 
number, and in variable locations, 
osteocytes constitute more than 90 percent 
of cells in bone and are strategically 
distributed throughout the entire bone 
volume. In addition, osteocytes form a 
syncytium among themselves and with cells 
on the bone surface via cytoplasmic 
processes that radiate from their bodies and 
travel along canaliculi excavated in the 
mineralized matrix. This network is perfectly 
suited to sense and respond to both 
mechanical and systemic stimuli by 
generating signals that affect osteoblasts, 
osteoclasts, and their progenitors in the 
bone marrow.  
 
Despite significant progress in our 
knowledge about osteocytes in recent years, 
the mechanisms by which these cells control 
the function of osteoblasts and osteoclasts 
are just starting to emerge. Sclerostin is the 
first, undisputable mediator of the 
communication between osteocytes and the 
executive cells of bone remodeling. 
Osteocytes, but not other cells in bone, 
express sclerostin – the product of the 
SOST gene that antagonizes the action of 
Wnts and BMPs (4;5). Evidence from human 
diseases and experimental animals 
indicates that sclerostin acts in a paracrine 
fashion to inhibit bone formation (4;6;7). 
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Recently, it was shown that sclerostin 
expression is potently inhibited by two 
recognized stimuli that increase osteoblast 
number: parathyroid hormone and 
mechanical loading (8-10), thereby 
representing a novel mechanism of 
regulation of bone formation mediated by 
osteocytes.  

 
Osteocyte Apoptosis: Regulation and 
Consequences  

 
That osteocytes perceive changes in the level 
of both physical stimuli as well as circulating 
factors is evidenced by studies on the 
regulation of their lifespan. Osteocytes are 
long-lived cells. However, like osteoblasts 
and osteoclasts, they die by apoptosis, and 
decreased osteocyte viability accompanies 
the bone fragility syndrome that characterizes 
glucocorticoid excess and estrogen 
withdrawal (11-13). Conversely, preservation 
of osteocyte viability might explain at least 
part of the anti-fracture effects of 
bisphosphonates, which cannot be 
completely accounted for by changes in bone 
mineral density (14).  

 
Osteocyte apoptosis is also regulated by 
mechanical forces. Thus, mechanical 
stimulation of osteocytic cells or authentic 
osteocytes protects them from the pro-
apoptotic action of glucocorticoids, etoposide 
and other death inducers (15;16). 
Mechanistic studies indicate that the 
transduction of mechanical forces into 
intracellular signals is accomplished by a 
signalsome assembled at caveolin-rich 
domains of the plasma membrane and 
composed of integrins, cytoskeletal proteins 
and kinases, including the focal adhesion 
kinase FAK and Src, resulting in activation of 
the ERK pathway and osteocyte survival (15). 
In vivo mechanical stimulation also regulates 
osteocyte lifespan. Thus, an increased 
prevalence of apoptotic osteocytes is found in 
unloaded bones (1) or in bones exposed to 
high levels of mechanical strain (2). In both 
cases, increased apoptosis of osteocytes 
was observed before any evidence of 
increased osteoclast resorption. Moreover, 
apoptotic osteocytes in unloaded bones 
accumulated in areas that were subsequently 
removed by osteoclasts (1). Taken together 

with the in vitro evidence, these findings had 
suggested that diminished mechanical forces 
eliminate signals that maintain viability, 
thereby leading to osteocyte apoptosis, and 
that dying osteocytes in turn become the 
beacons for osteoclast recruitment to the 
vicinity and the resulting increase in bone 
resorption (Fig. 1).  
 
The report of Tatsumi et al. now provides 
direct evidence that the death of osteocytes 
is sufficient to recruit osteoclasts and to 
increase resorption. The authors generated 
transgenic (TG) mice expressing the 
diphtheria toxin receptor (DTR) under the 
control of the dentin matrix protein 1 (DMP1) 
promoter, which is only active in osteocytes 
(17). DTR is normally not expressed in 
murine cells; therefore, osteocytes are the 
only cells sensitive to the toxin in these TG 
animals. A single injection of DT resulted in 
rapid induction of apoptosis of 70-80% of 
osteocytes, and this was followed by 
increased osteoclasts and loss of bone. 
These findings demonstrate that osteocyte 
apoptosis is sufficient to trigger osteoclast 
recruitment and bone resorption. Taken 
together with the evidence that osteocyte 
apoptosis is inhibited by estrogens and 
bisphosphonates (12;14), the findings of 
Tatsumi et al. also raise the intriguing 
possibility that preservation of osteocyte 
viability contributes to the anti-remodeling 
properties of these agents. Future research is 
required to directly test this stimulating 
hypothesis.  
 
Osteocytes: Primary Culprits for the Bone 
Loss Induced by Physical Inactivity  
 
Mechanical loading is critical for the 
maintenance of bone mass, and skeletal 
unloading, as with reduced physical activity in 
old age, immobilization by bed rest, or total or 
partial motor paralyses, causes bone loss 
leading to disuse osteoporosis (18). 
Furthermore, the bone loss that ensues 
under microgravity conditions represents the 
most significant hindrance for long-term 
space flight (19). The rapid decrease in 
osteocyte viability with unloading had 
suggested that osteocytes are the first 
responders to the change in mechanical 
forces (1). Now, Tatsumi et al. demonstrate 
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that mice depleted of osteocytes are 
protected from the bone loss induced by tail 

suspension, indicating that in the absence of 
osteocytes, bones are unable to elicit the 

 

 
Fig 1. A signalsome comprised of integrins, cytoskeletal proteins and kinases, including the focal 
adhesion kinase FAK and Src, transduces physiological levels of mechanical stimulation into 
activation of the ERK pathway, leading to osteocyte survival (15). Reduced mechanical 
stimulation eliminates kinase-mediated survival signaling, thereby leading to osteocyte apoptosis 
(1). Apoptotic osteocytes, in turn, become the beacons for osteoclast recruitment and the 
resulting increase in bone resorption and bone loss (3).  
 
normal osteoclastogenic response. These 
findings confirm that osteocytes are the 
primary culprit of the negative bone balance 
that ensues with weightlessness.  
 
Osteocytes: Not Required for the Anabolic 
Response of Bone to Mechanical Stimuli? 
 
Surprisingly, osteocyte-depleted mice were 
as responsive to loading as normal mice in 
the study by Tatsumi et al. Thus, the bone 
lost by tail suspension was recovered upon 
re-loading in TG mice that had undergone 
osteocyte ablation as effectively as in wild 
type mice. These findings raise the possibility 

that the bone anabolic effect of loading is 
mediated by a mechanism that does not 
involve osteocytes. However, this provocative 
hypothesis requires confirmation by 
additional studies. It seems counterintuitive 
that osteocytes would be essential for the 
osteoclastogenic response of bone to 
unloading but dispensable for the 
osteoblastogenic response to loading. One 
possibility is that the osteocyte-depleted TG 
animals elicited an anabolic response 
through the remaining osteocytes. Increased 
osteoblast generation and bone formation 
induced by loading is defective in animals 
lacking the Wnt co-receptor LRP5 (20) and, 
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consistent with this finding, loading 
dramatically reduces the expression of the 
Wnt antagonist sclerostin in osteocytes (10). 
Therefore, one way to assure that the 20-
30% of osteocytes that remained upon 
osteocyte ablation did not mediate the 
recovery of bone would be to determine 
whether, indeed, sclerostin expression did 
not decrease, and Wnt signaling was not 
triggered, upon re-loading in these mice.   
 
Concluding Remarks and Remaining 
Questions 
 
In conclusion, the osteocyte ablation model 
had revealed that osteocyte apoptosis is 
sufficient to initiate an osteoclastogenic 
response and that osteocytes are required for 
the skeletal adaptation to reduced 
mechanical forces. Whether living osteocytes 
continually produce molecules that restrain 
osteoclast recruitment, or whether in the 
process of undergoing apoptosis osteocytes 
produce pro-osteoclastogenic signals, 
remains to be determined. It is expected that 
intense investigations will take place in the 
near future attempting to identify the 
molecular mediators involved in the 
communication between osteocytes and 
osteoclasts.    
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