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Following in the tradition of outstanding Plenary Lectures
at the American Society for Bone and Mineral Research
(ASBMR) annual meeting, Ana Maria Cuervo’s introduction
to the multifaceted functions of autophagy (lysosomal
degradation of obsolete intracellular proteins) at the 2014
Gerald D Aurbach Lecture did not disappoint.1 Dr Cuervo has
investigated the role of autophagic signaling pathways in
maintaining energy stores within cells and developed tissue-
specific autophagy-deficient mouse models to investigate their
multiple pathways in age-related disorders including sarco-
penia and neurodegenerative diseases such as Parkinson’s and
Huntington’s Disease. As proteins are degraded by different
types of autophagic pathways depending on their conforma-
tional state, this process may be also of importance to the
etiology of bone diseases such as osteoporosis and osteo-
genesis imperfecta. Autophagy maintains bone mass as
indicated by elevated osteoclast number and bone formation
rate in mice lacking an essential autophagy gene.2,3 In abstracts
presented at this year’s meeting, chaperone-mediated
autophagy (a highly specialized form of autophagy where the
protein is directed toward the lysosome) was demonstrated to
drive periosteal progenitor cells toward the chondrocytic
lineage in response to nutrient deprivation, indicating the
importance of this pathway in bone cell fate.4 Autophagy was
also shown to be switched on in osteoblasts during miner-
alization and found to inhibit their expression of RANKL,5

suggesting direct involvement of autophagy in osteoblastic
control of both bone matrix quality and bone resorption. The
implication that autophagy may also have a role in pathological
bone diseases, such as its potential involvement in collagen
degradation in osteogenesis imperfecta, was briefly discussed
and is likely to be addressed in the future, as our understanding
of autophagic signaling in bone physiology and pathology
increases.

Increasingly, the ASBMR meeting has highlighted the
complex layers of regulation that direct bone turnover and

dictate bone cell behavior by endocrine, paracrine and
autocrine mechanisms. The recurring theme of this year’s
meeting appeared to be that we have only just begun dis-
covering the whole-body systems that regulate and are
regulated by bone-derived factors and the technologies that will
enable us to investigate these interactions.

The endocrine roles of osteocalcin

Expanding on last year’s recurring theme of bone functioning as
an endocrine organ, there was a surge in the number of
abstracts teasing out the effect, if any, of circulating osteocalcin
(OCN) on other physiological systems. There were 415
abstracts on the topic of OCN regulation of energy metabolism,
muscle or cognitive function alone, and approximately half of
these were selected for oral presentation. OCN is a bone matrix
protein that acts as a marker for bone remodeling and has been
reported to exert hormonal effects on beta cells of the pancreas
to stimulate production of insulin and adiponectin.6 Under-
carboxylated OCN has been implicated in driving energy
metabolism in mice, but its role in human glucose tolerance and
insulin sensitivity remains controversial.7

It was proposed that OCN sustains muscle function and
promotes muscle mass, an idea supported by data showing
early fatigue and low muscle mass in exercising OCN� /�

mice.8 However, as the OCN� /� mice are also reported to be
prone to anxiety and depression9 and studies on isolated
muscle cells have not been reported, the fatigue and sub-
sequent low muscle mass may simply reflect a reduced interest
in physical exertion in OCN-deficient mice. Preliminary
evidence was also presented to suggest that neural infusion
of OCN to young and old mice may improve memory.10

The OCN� /� mice are not widely available, and therefore it will
be some time before the hormonal effects of OCN are made
clear to the field, but the effects of OCN infusion can be tested
more simply to expand on these potential roles. Data were also
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presented showing that AMPK/OCN-dependent insulin resis-
tance and glucose intolerance occur in mice with low bone
mass resulting from conditional deletion of the glucose
transporter GLUT1 in osteoblasts.11 Because such deletion of
the major glucose transporter in osteoblasts would result in a
state of perpetual starvation for those cells, it is perhaps not
surprising that GLUT1-deficient osteoblasts do not survive.
Conversely, GLUT1 overexpression in osteoblasts resulted in
high bone mass and greater bone formation, in keeping with
their greater energy supply.

OCN was also discussed as a mediator of age-related
metabolic dysfunction. Transgenic mice with selectively dis-
rupted glucocorticoid signaling in osteoblasts/osteocytes are
partially protected against age-related reductions in serum
OCN,12 suggesting that OCN may mediate age-related declines
in metabolic function. Data from another clinical study, this time
in children, showed that normal weight children have sig-
nificantly higher carboxylated OCN levels compared with
overweight children. However, perhaps OCN is not the key
mediator, and the low serum OCN reflects changes in an
alternate pathway. For example, human data were presented
showing that high serum sclerostin is associated with the
metabolic syndrome in a manner independent of serum OCN
levels.13 Further to this, the effect of OCN in regulating
metabolic function appeared to be dependent on sclerostin, as
men with sclerostinHigh/OCNLow serum levels had the highest
prevalence of the metabolic syndrome.13 Thus, in humans,
there is still much to be learned regarding the mechanisms by
which serum OCN levels associate with changes in metabolic
function.

Epigenetic regulation of osteoblasts and the physiological
roles of histone deacetylases (HDACs)
Although there is much excitement about the new frontiers of
exploring the influence of bone on whole-body physiology,
there is still much about the basic mechanisms of bone cell
biology that remain poorly understood. For example, questions
continued to be raised about sex differences in bone structure
and why some gene knockouts have effects that differ
depending on the sex of the animal14–17 and how cortical and
trabecular bone can be influenced differently by the same
gene.18–20

One new mechanism of regulating chondrocyte, osteoblast
and osteocyte activity that was explored at length at the
meeting was epigenetics, and in particular the role of histone
deacetylases (HDACs) in regulating gene expression in the cells
of bone. Big-picture presentations described the transcription
factor binding patterns and histone modification marks during
osteoblast lineage commitment21 and specific histone mod-
ifications that correlate with changes in osteoblast gene
expression throughout differentiation.22 DNAse hypersensitivity
mapping was also presented as a tool to identify temporal non-
promoter regions of transcriptional regulation in osteoblast
differentiation genes,23 suggesting that histone modification
likely has an important role in mediating both osteoblast
commitment and differentiation. Data were also presented
identifying the miRNA families involved in osteoblast to
osteocyte differentiation,24 some of the first data to examine the
molecular mechanisms underlying this late-stage transition.

HDACs are histone-modifying enzymes that remove acetyl
groups from specific lysine residues, thereby allowing the

histones to wrap DNA more tightly and suppress gene
expression. HDACs are thought to be involved in cancer onset
and progression, neurological diseases and innate immune
response,25–27 with a number of HDAC inhibitors being
developed as therapies for these conditions. Eighteen mam-
malian HDACs have been identified to date, and these have
been divided into four classes, depending on their similarity to
yeast homologs;28 the current goal is to generate class IIa-
specific inhibitors (which would target HDACs 4, 5, 7 and 9).
HDAC inhibitors have been reported to suppress osteoclas-
togenesis29,30 and to promote osteoblast differentiation,31 but
the use of HDAC inhibitors, such as valproate, in vivo has
detrimental effects on the skeleton in mice32 and in humans with
epilepsy.33 At this year’s meeting, much work was presented on
the ability of HDACs in class I (particularly HDAC3) and IIa
(mostly HDAC4 and HDAC5) to regulate osteoblast and
chondrocyte differentiation.

Chondrocytic deletion of HDAC3 was shown to result in
runting and embryonic lethality.34 The use of a tamoxifen-
inducible Cre to enable deletion of HDAC3 after the postnatal
period indicated that HDAC3 suppresses MMP13, a gene
known to regulate cartilage breakdown,35,36 as there was
elevated expression of MMP13 throughout the proliferative,
pre-hypertrophic and hypertrophic zones in the inducible
HDAC3-null mice.34 A related knockout in late chondrocytes
and the osteoblast lineage (using Osx1Cre)37 led to a phenotype
of osteopenia and increased marrow adiposity. BMSCs from
these mice also formed more adipocytes, possibly due to an
increase in lipid storage and changes in glucocorticoid
metabolism. Thus, HDAC3 inhibits hypertrophic cartilage
breakdown, which may impair normal endochondral ossifi-
cation, and suppresses adipogenesis, although the mechanism
is yet to be defined.

HDAC4 and HDAC5 are class II HDACs, and GWAS analysis
revealed HDAC5 as one of a number of BMD-influencing
loci.38 PTH has also been known for some years to induce
MMP13 transcription in osteoblasts by releasing HDAC4
repression.39,40 Furthermore, HDAC4-null mice, which are
runted and rarely survive weaning,41 exhibit high MMP13 in
osteoblasts and hypertrophic chondrocytes.40 New data
presented suggest that each aspect of the bone phenotype in
HDAC4-null mice is partially rescued by MMP13 deletion,39 and
therefore that multiple aspects of the HDAC4-null phenotype
are caused by MMP13; whether the phenotype of the HDAC3-
null mice might also be rescued by MMP13 deletion is not yet
known. The same group also showed that PTH induces MMP13
transcription by causing HDAC4 to dissociate from Runx2 at the
MMP13 promoter.42 It is not yet known whether HDAC3 can
also bind the MMP13 promoter region, or whether HDAC3 and
HDAC4 may coregulate MMP13 transcription.

HDAC4 and 5 suppress Mef2c,41,43 a transcription factor with
many roles, including the suppression of sclerostin by para-
thyroid hormone.44 Both PTH and PTHrP suppress Mef2c
expression via HDAC4/5 in osteocytes and chondrocytes,
respectively, and in osteocytes this appears to be a mechanism
by which PTH inhibits sclerostin.45–47 HDAC5-null mice show
increased SOST mRNA and low trabecular bone volume,
associated with decreased Wnt activity and presumably
decreased osteoblast activity.48 This phenotype may relate to
HDAC5 suppression of Mef2c, which was demonstrated
in vitro. A requirement for HDAC4 in chondrocytes was earlier
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revealed by the lethal chondrocyte phenotype in mice null for
HDAC4.41 This has now been reproduced by a chondrocyte-
specific knockout,49 which bears some similarities to the
PTHrP-null mouse.50 Further investigation revealed that
crossing the PTHrP and HDAC4 hemizygous mice did not lead
to a phenotype, unless they were crossed with a miR-140-null
mouse;51 these mice showed Mef2c expression released from
its inhibition by HDAC4, suggesting that HDAC4 inhibition of
Mef2C depends on miR-140.

HDAC4 not only regulates sclerostin expression but was also
reported to stabilize ATF4 by direct interaction,52 thereby
enhancing ATF4 activation of the OCN promoter. Osteoblast-
specific HDAC4-null mice showed hypoinsulinemia, infertility,
decreased learning and memory, which may all relate to their
low OCN expression, but no data were presented on a bone
phenotype in these mice.53 It was also reported that PTH
stimulates expression of an E3 ubiquitin ligase that binds
HDAC4 in the presence of PTH,52 suggesting that this provides
the negative feedback required for HDAC4 degradation.

The problem and treatment of heterotopic ossification
Jonathan Forsberg from Walter Reed National Military Medical
Center presented an enlightening talk on the increased rates of
heterotopic observation (HO) being observed in enlisted US
military personnel. He discussed some of the key difficulties in
managing long-term care of military personnel and civilians who
have suffered amputation because of blast injury. The lack of
alternatives to surgery is an area in which more research is
needed, not only for military personnel and victims of land
mines, but also for patients with spinal cord or traumatic brain
injury, in which heterotopic ossification is a common occur-
rence,54 as well as patients with genetic mutations that lead to
extraskeletal ossifications, including fibrodysplasia ossificans
progressiva (FOP)55 and progressive osseous heteroplasia.56 In
that same symposium, Yingzi Yang described her recently
published work in a genetic model of HO57 that showed the
formation of HO when Gsa (encoded by the Gnas gene) was
deleted in the early mesenchymal lineage and their progeny
using Prx1-Cre. Gsa links G protein-coupled receptors (such as
the PTH Receptor) with cyclic AMP signaling, suggesting that
the role of this protein in human biology may extend beyond
hyperparathyroidism, the McCune–Albright syndrome and
Albright hereditary osteodystrophy. Furthermore, reducing
Hedgehog signaling inhibited the development of these Gnas-
dependent heterotopic ossifications formed in that model,
providing a possible pathway of treatment, should similar
mutations be observed in humans. Maurizio Pacifici also
presented the progress of his earlier work showing that RARg
agonists are capable of reducing heterotopic ossifications in
BMP4-dependent models of HO.58 His laboratory reported that
this treatment is successful in reducing HO in a new FOP model,
a Prrx1þ cell lineage gain-of-function mutation for BMP type I
receptor (R206H), which results in 100% penetrance of HO.59

Clinical trials for HO of the RARg agonist Palovarotene, a
treatment for emphysema,60 are now underway. Other new
genetic models of BMP-dependent HO were also presented: a
Cre-inducible constitutively active ALK2 receptor (R22A mutant
of BMP receptor) mouse model combined with intramuscular
injection of Adeno-Cre,61 and intramuscular injection of BMP2
that results in inflammatory-mediated endochondral bone
formation regulated via the sympathetic nervous system.62

Promising data were also presented for an OPG inhibitory
antibody that increased osteoclast formation in the caALK2
receptorþAd-Cre model of HO and resulted in higher
osteoclast numbers and bone resorption at the site of HO that
was greater than the general effect on the skeleton,61 sug-
gesting some specificity for this antibody at sites of HO, as well
as an OPG-specific mechanism in ectopic bone formation.
These data were from a systemic treatment with the OPG
antibody, and it would be interesting to see whether these
results are even more striking with intramuscular OPG
treatment.

Data were also presented providing insight into the progenitor
cell populations and BMP2-associated targets that contribute
to HO. A specific subset of SMA (a-smooth muscle actin)
progenitor cells (SM/C2.6þ ve) differentiate into osteoblasts in
the muscle in response to BMP2, indicating that muscle satellite
cells are capable of osteogenic differentiation once removed
from their niche.63 Membrane-type 1-MMP (Mt1-MMP) in
SM22a-positive vascular-associated cells was also found to be
necessary for BMP2-induced HO. A Rosa26-LacZ reporter
mouse directed by SM22a showed in vivo staining of osteo-
cytes, but not osteoblasts, suggesting an additional progenitor
pool capable of differentiating into osteocytes.64 A related
suggestion was made in a separate presentation where data
were presented indicating that chondrocytes may directly
transform into osteocytes,65 but these data were limited to
observations of related cell morphology, and lineage tracing
experiments are required for validation.

The bone field will continue to evolve over the coming
decades, and, although it is invigorating to witness the
application of bone-derived factors in other bodily systems,
there is still much to be learned about how bone cells interact
with each other and the molecular mechanisms that direct bone
formation in both physiological and pathological conditions.
The data presented at this year’s ASBMR meeting continue the
theme of identifying key signaling molecules that orchestrate
bone remodeling and contribute to skeletal disease etiology
and provide new hope for therapeutic intervention.
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