Mesenchymal stem cell- mediated immunomodulation and the potential therapeutic application in Crohn’s Disease
Abstract
tract occurs. The review aims to discuss the properties of MSCs and explore their potential application in treating CD. This review highlights the tissue-reparative properties of MSCs and specifically focuses on the immunomodulatory properties of MSCs. Results from clinical trials regarding the efficacy and safety of MSCs have been promising, proving that MSCs could potentially be used to treat CD.
Keywords
Full Text:
Full textReferences
NHS. Crohn's disease. Available from: https://www.nhs.uk/conditions/crohns-
disease/ [Accessed 03 March 2019]
NHS. Treatment. Available from: https://www.nhs.uk/conditions/crohns-
disease/treatment/ [Accessed 03 March 2019]
Jess T, Loftus E, Velayos F, Harmsen W, Zinsmeister A, Smyrk T et al. Risk
of intestinal cancer in inflammatory bowel disease: a population-based study
from olmsted county, Minnesota. Gastroenterology. 2006; 130(4): 1039-1046.
De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA,
Arias J et al. Immunosuppressive properties of mesenchymal stem cells:
advances and applications. Current Molecular Medicine. 2012; 12(5): 574-
Bassi Ê, Aita CA, Camara NO. Immune regulatory properties of multipotent
mesenchymal stromal cells: where do we stand? World Journal of Stem Cells.
; 3(1): 1.
Okamoto R, Watanabe M. Investigating cell therapy for inflammatory bowel
disease. Expert Opinion on Biological Therapy. 2016; 16(8): 1015-1023.
Friedenstein A, Piatetzky-Shapiro I, Petrakova K. Osteogenesis in transplants
of bone marrow cells. Development. 1966; 16(3): 381-390.
Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast
colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.
Cell Proliferation. 1970; 3(4): 393-403.
Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J et al.
Multilineage potential of adult human mesenchymal stem cells. Science.
; 284(5411): 143-147.
Caplan A. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;
(5): 641-650.
Davies O, Smith A, Cooper P, Shelton R, Scheven B. The effects of
cryopreservation on cells isolated from adipose, bone marrow and dental pulp
tissues. Cryobiology. 2014; 69(2): 342-347.
Secunda R, Vennila R, Mohanashankar A, Rajasundari M, Jeswanth S,
Surendran R. Isolation, expansion and characterisation of mesenchymal stem
cells from human bone marrow, adipose tissue, umbilical cord blood and
matrix: a comparative study. Cytotechnology. 2014; 67(5): 793-807.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et
al. Minimal criteria for defining multipotent mesenchymal stromal cells. The
International Society for Cellular Therapy position statement. Cytotherapy.
; 8(4): 315-317.
Raynaud C, Maleki M, Lis R, Ahmed B, Al-Azwani I, Malek J et al.
Comprehensive characterization of mesenchymal stem cells from human
placenta and fetal membrane and their response to osteoactivin stimulation.
Stem Cells International. 2012; 2012: 1-13.
Duijvestein M, Vos A, Roelofs H, Wildenberg M, Wendrich B, Verspaget H et
al. Autologous bone marrow-derived mesenchymal stromal cell treatment for
refractory luminal Crohn's disease: results of a phase I study. Gut. 2010;
(12): 1662-1669.
Molendijk I, Bonsing B, Roelofs H, Peeters K, Wasser M, Dijkstra G et al.
Allogeneic bone marrow–derived mesenchymal stromal cells promote healing
of refractory perianal fistulas in patients with Crohn’s disease.
Gastroenterology. 2015; 149(4): 918-927.
Gao P, Zhou Y, Xian L, Li C, Xu T, Plunkett B et al. Functional effects of TGF-
on mesenchymal stem cell mobilization in cockroach allergen-induced
asthma. The Journal of Immunology. 2014; 192(10): 4560-4570.
Schrepfer S, Deuse T, Reichenspurner H, Fischbein M, Robbins R, Pelletier
M. Stem cell transplantation: the lung barrier. Transplantation Proceedings.
; 39(2): 573-576.
Han F, Wang C, Yang L, Zhan S, Zhang M, Tian K. Contribution of murine
bone marrow mesenchymal stem cells to pancreas regeneration after partial
pancreatectomy in mice. Cell Biology International. 2012; 36(9): 823-831.
Păunescu V, Deak E, Herman D, Siska I, Tanasie G, Bunu C et al. In vitro
differentiation of human mesenchymal stem cells to epithelial lineage. Journal
of Cellular and Molecular Medicine. 2007; 11(3): 502-8.
Ferrand J, Noël D, Lehours P, Prochazkova-Carlotti M, Chambonnier L,
Ménard A et al. Human bone marrow-derived stem cells acquire epithelial
characteristics through fusion with gastrointestinal epithelial cells. PLoS ONE.
; 6(5): e19569.
Szaraz P, Gratch Y, Iqbal F, Librach C. Differentiation of human
mesenchymal stem cells into functional cardiomyocyte-like cells. Journal of
Visualized Experiments. 2017; (126).
Nombela-Arrieta C, Ritz J, Silberstein L. The elusive nature and function of
mesenchymal stem cells. Nature Reviews Molecular Cell Biology. 2011;
(2): 126-131.
Qian H, Yang H, Xu W, Yan Y, Chen Q, Zhu W et al. Bone marrow
mesenchymal stem cells ameliorate rat acute renal failure by differentiation
into renal tubular epithelial-like cells. International Journal of Molecular
Medicine. 2008; 22(3): 325-332.
Cho K, Ju S, Cho S, Jung Y, Woo S, Seoh J et al. Mesenchymal stem cells
showed the highest potential for the regeneration of injured liver tissue
compared with other subpopulations of the bone marrow. Cell Biology
International. 2009; 33(7): 772-777.
Von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B et al. Analysis of
tissues following mesenchymal stromal cell therapy in humans indicates
limited long-term engraftment and no ectopic tissue formation. Stem Cells.
; 30(7): 1575-1578.
Zhang S, Teo K, Chuah S, Lai R, Lim S, Toh W. MSC exosomes alleviate
temporomandibular joint osteoarthritis by attenuating inflammation and
restoring matrix homeostasis. Biomaterials. 2019; 200: 35-47.
Halim N, Aizat W, Yahaya B. The effect of mesenchymal stem cell-secreted
factors on airway epithelial repair. Regenerative Medicine. 2019; 14(1): 15-31.
Markovic B, Kanjevac T, Harrell C, Gazdic M, Fellabaum C, Arsenijevic N et
al. Molecular and cellular mechanisms involved in mesenchymal stem cell-
based therapy of inflammatory bowel diseases. Stem Cell Reviews and
Reports. 2017; 14(2): 153-165.
Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C et al. Mesenchymal stem
cells stimulate intestinal stem cells to repair radiation-induced intestinal injury.
Cell Death & Disease. 2016; 7(9): e2387.
Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D et al.
Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells
(IPSC) equivalent to adipose-derived MSC in promoting intestinal healing and
microbiome normalization in mouse inflammatory bowel disease model. Stem
Cells Translational Medicine. 2018; 7(6): 456-467.
Goessling W, North T, Loewer S, Lord A, Lee S, Stoick-Cooper C et al.
Genetic interaction of PGE2 and Wnt signaling regulates developmental
specification of stem cells and regeneration. Cell. 2009; 136(6): 1136-1147.
Sémont A, Demarquay C, Bessout R, Durand C, Benderitter M, Mathieu N.
Mesenchymal stem cell therapy stimulates endogenous host progenitor cells
to improve colonic epithelial regeneration. PLoS ONE. 2013; 8(7): e70170.
Chen H, Min X, Wang Q, Leung F, Shi L, Zhou Y et al. Pre-activation of
mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its
paracrine effects on radiation-induced intestinal injury. Scientific Reports.
; 3(5): 8718.
Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li M et al. Adipose-derived
mesenchymal stem cells promote the survival of fat grafts via crosstalk
between the Nrf2 and TLR4 pathways. Cell Death & Disease. 2016; 7(9):
e2369.
Tao H, Han Z, Han Z, Li Z. Proangiogenic features of mesenchymal stem
cells and their therapeutic applications. Stem Cells International. 2016; 2016:
-11.
Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Iijima H et al. Topical
implantation of mesenchymal stem cells has beneficial effects on healing of
experimental colitis in rats. Journal of Pharmacology and Experimental
Therapeutics. 2008; 326(2): 523-531.
Lee R, Pulin A, Seo M, Kota D, Ylostalo J, Larson B et al. Intravenous hMSCs
improve myocardial infarction in mice because cells embolized in lung are
activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell.
; 5(1): 54-63.
Martini F, Nath J, Bartholomew E. Fundamentals of anatomy & physiology.
th ed, pp778-804. San Francisco: Benjamin Cummings, 2018.
Shale M, Ghosh S. How intestinal epithelial cells tolerise dendritic cells and its
relevance to inflammatory bowel disease. Gut. 2009; 58(9): 1291-1299.
Ganz T. Epithelia: Not just physical barriers. Proceedings of the National
Academy of Sciences. 2002; 99(6): 3357-3358.
Newton K, Dixit V. Signalling in innate immunity and inflammation. Cold
Spring Harbor Perspectives in Biology. 2012; 4(3): a006049.
Crane J, Mongiardo K. Pro-inflammatory effects of uric acid in the
gastrointestinal tract. Immunological Investigations. 2013; 43(3): 255-266.
Matzinger P. The danger model: a renewed sense of self. Science. 2002;
(5566): 301-305.
Lawrence T. The nuclear factor NF- B Pathway in inflammation. Cold Spring
Harbor Perspectives in Biology. 2009; 1(6): a001651.
Porter C, Tribble D, Aliaga P, Halvorson H, Riddle M. Infectious gastroenteritis
and risk of developing inflammatory bowel disease. Gastroenterology. 2008;
(3): 781-786.
Palone F, Vitali R, Cucchiara S, Pierdomenico M, Negroni A, Aloi M et al.
Role of HMGB1 as a suitable biomarker of subclinical intestinal inflammation
and mucosal healing in patients with inflammatory bowel disease.
Inflammatory Bowel Diseases. 2014; 20(8): 1448-1457.
Huang Y, Chen Z. Inflammatory bowel disease related innate immunity and
adaptive immunity. American Journal of Translational Research. 2016; 8:
–2497.
Nanini H, Bernardazzi C, Castro F, Souza H. Damage-associated molecular
patterns in inflammatory bowel disease: From biomarkers to therapeutic
targets. World Journal of Gastroenterology. 2018; 24(41): 4622-4634.
Oh J, Lee R, Yu J, Ko J, Lee H, Ko A et al. Intravenous mesenchymal stem
cells prevented rejection of allogeneic corneal transplants by aborting the
early inflammatory response. Molecular Therapy. 2012; 20(11): 2143-2152.
Yang H, Song W, Li Q, Kim S, Kim H, Ryu M et al. Canine mesenchymal stem
cells treated with TNF-α and IFN-γ enhance anti-inflammatory effects through
the COX-2/PGE2 pathway. Research in Veterinary Science. 2018; 119: 19-
Liu H, Kemeny D, Heng B, Ouyang H, Melendez A, Cao T. The
immunogenicity and immunomodulatory function of osteogenic cells
differentiated from mesenchymal stem cells. The Journal of Immunology.
; 176(5): 2864-2871.
Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L et al. A critical role of
IFNγ in priming MSC-mediated suppression of T cell proliferation through up-
regulation of B7-H1. Cell Research. 2008; 18(8): 846-857.
Neurath M. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine
& Growth Factor Reviews. 2019; 45: 1-8.
MacDonald T, Monteleone I, Fantini M, Monteleone G. Regulation of
homeostasis and inflammation in the intestine. Gastroenterology. 2011;
(6): 1768-1775.
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y et al. Cell–cell contact with
proinflammatory macrophages enhances the immunotherapeutic effect of
mesenchymal stem cells in two abortion models. Cellular & Molecular
Immunology. 2019.
Choi H, Lee R, Bazhanov N, Oh J, Prockop D. Anti-inflammatory protein TSG-
secreted by activated MSCs attenuates zymosan-induced mouse peritonitis
by decreasing TLR2/NF- B signaling in resident macrophages. Blood. 2011;
(2): 330-338.
Song W, Li Q, Ryu M, Ahn J, Bhang D, Jung Y et al. TSG-6 released from
intraperitoneally injected canine adipose tissue-derived mesenchymal stem
cells ameliorate inflammatory bowel disease by inducing M2 macrophage
switch in mice. Stem Cell Research & Therapy. 2018; 9(1): 91.
Li J, Xue H, Li T, Chu X, Xin D, Xiong Y et al. Exosomes derived from
mesenchymal stem cells attenuate the progression of atherosclerosis in
ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2
macrophage. Biochemical and Biophysical Research Communications. 2019;
(4): 565-572.
François M, Romieu-Mourez R, Li M, Galipeau J. Human msc suppression
correlates with cytokine induction of indoleamine 2,3-dioxygenase and
bystander m2 macrophage differentiation. Molecular Therapy. 2012; 20(1):
-195.
Saldaña L, Bensiamar F, Vallés G, Mancebo F, García-Rey E, Vilaboa N.
Immunoregulatory potential of mesenchymal stem cells following activation by
macrophage-derived soluble factors. Stem Cell Research & Therapy. 2019;
(1): 58.
Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A
et al. Mesenchymal stem cells overexpressing interleukin-10 promote
neuroprotection in experimental acute ischemic stroke. Molecular Therapy -
Methods & Clinical Development. 2017; 6: 102-111.
François M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression
correlates with cytokine induction of indoleamine 2,3-dioxygenase and
bystander M2 macrophage differentiation. Molecular Therapy. 2012; 20(1):
-195.
Anderson P, Souza-Moreira L, Morell M, Caro M, O'Valle F, Gonzalez-Rey E
et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory
macrophages which protect from experimental colitis and sepsis. Gut. 2012;
(8): 1131-1141.
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the
innate immune system. Nature Reviews Immunology. 2012; 12(5): 383-396.
De Yang, Chen Q, Schmidt A, Anderson G, Wang J, Wooters J et al. Ll-37,
the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl
peptide receptor–like 1 (Fprl1) as a receptor to chemoattract human
peripheral blood neutrophils, monocytes, and T cells. The Journal of
Experimental Medicine. 2000; 192(7): 1069-1074.
Harbord M, Marks D, Forbes A, Bloom S, Day R, Segal A. Impaired neutrophil
chemotaxis in Crohn's disease relates to reduced production of chemokines
and can be augmented by granulocyte-colony stimulating factor. Alimentary
Pharmacology & Therapeutics. 2006; 24(4): 651-660.
Costa F. Calprotectin is a stronger predictive marker of relapse in ulcerative
colitis than in Crohn's disease. Gut. 2005; 54(3): 364-368.
Smith A, Rahman F, Hayee B, Graham S, Marks D, Sewell G et al.
Disordered macrophage cytokine secretion underlies impaired acute
inflammation and bacterial clearance in Crohn's disease. The Journal of
Experimental Medicine. 2009; 206(9): 1883-1897.
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X et al. The IL-6–STAT3 axis
mediates a reciprocal crosstalk between cancer-derived mesenchymal stem
cells and neutrophils to synergistically prompt gastric cancer progression. Cell
Death & Disease. 2014; 5(6): 1295-1295.
Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et
al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for
neutrophil preservation in the bone marrow niche. Stem Cells. 2008; 26(1):
-162.
Leyendecker Jr. A, Pinheiro C, Amano M, Bueno D. The use of human
mesenchymal stem cells as therapeutic agents for the in vivo treatment of
immune-related diseases: a systematic review. Frontiers in Immunology.
; 9.
Li S, Zheng X, Li H, Zheng J, Chen X, Liu W et al. Mesenchymal stem cells
ameliorate hepatic ischemia/reperfusion injury via inhibition of neutrophil
recruitment. Journal of Immunology Research. 2018; 2018: 1-10.
Dyer D, Thomson J, Hermant A, Jowitt T, Handel T, Proudfoot A et al. TSG-6
inhibits neutrophil migration via direct interaction with the chemokine CXCL8.
The Journal of Immunology. 2014; 192(5): 2177-2185.
Li S, Zheng X, Li H, Zheng J, Chen X, Liu W et al. Mesenchymal stem cells
ameliorate hepatic ischemia/reperfusion injury via inhibition of neutrophil
recruitment. Journal of Immunology Research. 2018; 2018: 1-10.
Kim H, Yun J, Shin T, Lee S, Lee B, Yu K et al. Human umbilical cord blood
mesenchymal stem cell-derived PGE2and TGF-β1 alleviate atopic dermatitis
by reducing mast cell degranulation. Stem Cells. 2015; 33(4): 1254-1266.
Xu X, Rivkind A, Pikarsky A, Pappo O, Bischoff S, Levi‐Schaffer F. Mast cells
and eosinophils have a potential profibrogenic role in Crohn disease.
Scandinavian Journal of Gastroenterology. 2004; 39(5): 440-447.
Akers I, Parsons M, Hill M, Hollenberg M, Sanjar S, Laurent G et al. Mast cell
tryptase stimulates human lung fibroblast proliferation via protease-activated
receptor-2. American Journal of Physiology-Lung Cellular and Molecular
Physiology. 2000; 278(1): 193-201.
Adibe O, Georgeson K. Crohn's disease. Pediatric Surgery. 2012: 1209-1215.
Lee S, Ryu C, Shin J, Choi D, Kim A, Yu H et al. The therapeutic effect of
human embryonic stem cell-derived multipotent mesenchymal stem cells on
chemical-induced cystitis in rats. International Neurourology Journal. 2018;
: 34-45.
Kuwabara A, Liu J, Kamio Y, Liu A, Lawton M, Lee J et al. Protective effect of
mesenchymal stem cells against the development of intracranial aneurysm
rupture in mice. Neurosurgery. 2017; 81(6): 1021-1028.
Kawai T, Akira S. Pathogen recognition with toll-like receptors. Current
Opinion in Immunology. 2005; 17(4): 338-344.
Nauta A, Kruisselbrink A, Lurvink E, Willemze R, Fibbe W. Mesenchymal
stem cells inhibit generation and function of both CD34+-derived and
monocyte-derived dendritic cells. The Journal of Immunology. 2006; 177(4):
-2087.
Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and
disease. Journal of Clinical Investigation. 2009; 119(9): 2441-2450.
Djouad F, Charbonnier L, Bouffi C, Louis-Plence P, Bony C, Apparailly F et al.
Mesenchymal stem cells inhibit the differentiation of dendritic cells through an
interleukin-6-dependent mechanism. Stem Cells. 2007; 25(8): 2025-2032.
Spaggiari G, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-
derived DC maturation and function by selectively interfering with the
generation of immature DCs: central role of MSC-derived prostaglandin E2.
Blood. 2009; 113(26): 6576-6583.
Spaggiari G, Capobianco A, Abdelrazik H, Becchetti F, Mingari M, Moretta L.
Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and
cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin
E2. Blood. 2007; 111(3): 1327-1333.
El Haddad N, Moore R, Heathcote D, Mounayar M, Azzi J, Mfarrej B et al. The
novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem
cells. The Journal of Immunology. 2011; 187(5): 2252-2260.
Ciccocioppo R, Cangemi G, Kruzliak P, Gallia A, Betti E, Badulli C et al. Ex
vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s
disease mucosal T cells are largely dependent on indoleamine 2,3-
dioxygenase activity and cell-cell contact. Stem Cell Research & Therapy.
; 6(1).
Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel
disease. Journal of Clinical Investigation. 2007; 117(3): 514-521.
Chen Q, Yan L, Wang C, Wang W, Shi H, Su B et al. Mesenchymal stem cells
alleviate TNBS-induced colitis by modulating inflammatory and autoimmune
responses. World Journal of Gastroenterology. 2013; 19(29): 4702.
Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L et al. A critical role of
IFNγ in priming MSC-mediated suppression of T cell proliferation through up-
regulation of B7-H1. Cell Research. 2008; 18(8): 846-857.
MacFarlane R, Graham S, Davies P, Korres N, Tsouchnica H, Heliotis M et al.
Anti-inflammatory role and immunomodulation of mesenchymal stem cells in
systemic joint diseases: potential for treatment. Expert Opinion on
Therapeutic Targets. 2013; 17(3): 243-254.
Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone
marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-
dioxygenase-mediated tryptophan degradation. Blood. 2004; 103(12): 4619-
Chen K, Wang D, Du W, Han Z, Ren H, Chi Y et al. Human umbilical cord
mesenchymal stem cells hUC-MSCs exert immunosuppressive activities
through a PGE2-dependent mechanism. Clinical Immunology. 2010; 135(3):
-458.
Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V et
al. Mesenchymal stem cells attenuate the adverse effects of
immunosuppressive drugs on distinct T cell subopulations. Stem Cell Reviews
and Reports. 2016; 13(1): 104-115.
Chiossone L, Conte R, Spaggiari G, Serra M, Romei C, Bellora F et al.
Mesenchymal stromal cells induce peculiar alternatively activated
macrophages capable of dampening both innate and adaptive immune
responses. Stem Cells. 2016; 34(7): 1909-1921.
Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory t-cell generation
and kidney allograft tolerance induced by mesenchymal stem cells associated
with indoleamine 2,3-dioxygenase expression. Transplantation. 2010; 90(12):
-1320.
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA
expression and immunologic properties of differentiated and undifferentiated
mesenchymal stem cells. Experimental Hematology. 2003; 31(10): 890-896.
Tse W, Pendleton J, Beyer W, Egalka M, Guinan E. Suppression of
allogeneic T-cell proliferation by human marrow stromal cells: implications in
transplantation. Transplantation. 2003; 75(3): 389-397.
Zhou B, Yue R, Murphy M, Peyer J, Morrison S. Leptin-receptor-
expressing mesenchymal stromal cells represent the main source of bone
formed by adult bone marrow. Cell Stem Cell. 2014; 15(2): 154-168.
Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem
cell treatment for Crohn's disease: a randomized controlled clinical trial. Gut
and Liver. 2018; 12(1): 73-78.
Lightner A, Wang Z, Zubair A, Dozois E. A systematic review and
meta-analysis of mesenchymal stem cell injections for the treatment of
perianal Crohn’s disease. Diseases of the Colon & Rectum. 2018; 61(5): 629-
Caplan A. Adult mesenchymal stem cells for tissue engineering versus
regenerative medicine. Journal of Cellular Physiology. 2007; 213(2): 341-347.
Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y et al. Isolation and
characterization of human mesenchymal stem cells derived from synovial fluid
by magnetic-activated cell sorting (MACS). Cell Biology International. 2017;
(3): 262-271.
Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart
P et al. Isolation and Characterization of Human Mesenchymal Stromal Cell
Subpopulations: Comparison of Bone Marrow and Adipose Tissue. Stem
Cells and Development. 2015; 24(18): 2142-2157.
DOI: http://dx.doi.org/10.7227//MMJ.0032
Copyright (c) 2020 Nadin Hawwash
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.