The Role of Anti-Inflammatory Cytokines in Heart Failure
Abstract
Coronary occlusion promotes a state of ischaemia that results in myocardial infarction; it is a major cause of mortality accounting for one hospital admission every three minutes. At the site of infarct, sterile inflammation is initiated due to pro-inflammatory secretions from cardiac and innate immune cells. The focus of this review is to explore the role of a newly discovered innate immune complex, the nod-like receptor family pyrin domain containing 3 inflammasome. This review discusses the potential of this immune complex in decreasing the proportion of functional myocardium during ischaemia and ischaemia-reperfusion injury. Due to the central role of this inflammasome in promoting cardiac dysfunction following an acute myocardial infarction, the risk of port-infarction heart failure increases. With an intention of highlighting the importance of improving current management of patients with acute myocardial infarction, this review addresses novel therapeutic agents that have demonstrated cardioprotective outcomes in recent studies. This follows discussion concerning the therapeutic potential of these agents, intending to form the basis of heart failure therapy.
Keywords
References
British Heart Foundation CVD Statistics. Heart Statistics. Available from: https://www.bhf.org.uk/what-we-do/our-research/heart-statistics [Accessed 31
March 2019]
Kumar P, Clark K. Chapter 14, Cardiovascular Diease. Kumar & Clark's Clinical
Medicine, 8th ed, pp 717. London, United Kingdom: Elsevier; 2012.
Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3
Inflammasome in Heart Failure. J Card Fail. 2015;21(7):586–593
National Health Service. Number of new heart failure cases in the UK is on the rise. Available from: https://www.nhs.uk/news/heart-and-lungs/number-new- heart-failure-cases-uk-are-rise/ [Accessed 31 March 2019]
Moore KL, Agur AMR, Dalley AF. Arterial Supply of Heart. Clinically Oriented
Anatomy, 8th ed, pp 399. Philadelphia: Wolters Kluwer; 2018.
Gray GA, Toor IS, Castellan R, Crisan M, Meloni M. Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Current Opinion in Physiology. 2018; 1:46–51
Orogo AM, Gustafsson ÅB. Cell death in the myocardium: my heart won't go on. IUBMB Life. 2013;65(8):651–656
Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V et al. ROS-
Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis
Ischemia/Reperfusion Injury. Oxidative Medicine and Cellular Longevity. 2016;
: 2183026
Huded C, Kravitz K, Menon V, Gullet T, Hantz S, Ellis S et al. Impact of the CMS Algorithm for Door-To-Balloon Time Public Reporting on Door-To-Balloon Time Performance. Journal of the American College of Cardiology. 2018; 71:11
Suppl A116
Smith JN, Negrelli JM, Manek MB, Hawes EM, Viera AJ. Diagnosis and Management of Acute Coronary Syndrome: An Evidence-Based Update. J Am Board Fam Med. 2015; 28(2): 283-29
Montecucco F, C Federico, Schindler TH. Pathophysiology of ST-segment Elevation Myocardial Infarction: Novel Mechanisms and Treatments. European Heart Journal. 2016; 37(16): 1268–1283
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD.
Fourth universal definition of myocardial infarction. European Heart Journal.
; 40(3): 237–269
Rittoo D. Cardiac Troponin T Assay is Not Cardiac Specific. BMJ Journals. 2014
Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 2015;12(3):305–312
National Institute for Health and Care Excellence. Myocardial infarction with ST- segment elevation: acute management. Available from: https://www.nice.org.uk/guidance/CG167/chapter/1-Recommendations [Accessed 31 March 2019]
Toldo S, Abbate A. The NLRP3 Inflammasome in Acute Myocardial Infarction.
Nature Reviews Cardiology. 2017; 15:203-214
Rubartelli A, Lotze MT, Latz E, Manfredi A. Mechanisms of sterile inflammation. Front Immunol. 2013; 4:398
Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018; 186:73–87
Tamariz L, Hare JM. Inflammatory cytokines in heart failure: roles in aetiology and utility as biomarkers. European Heart Journal. 2010; 31(7):768–770
Wang J, Zhao L, Pan X, Chen N, Chen J, Gong Q. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF- β1 signalling pathway. Laboratory Investigation. 2016; 96:839-852
Schroder K, Tschopp J. The Inflammasomes. Cell. 2010; 140(6):821-832
Nishida K, Otsu K. Sterile Inflammation and Degradation Systems in Heart
Failure. Circulation Journal. 2017; 81(5):622-628
Lugrin J, Martinon, F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev. 2018; 281:99–114
Schroder K, Tschopp J. NLRP3 Inflammasome Activation: The Convergence of
Multiple Signalling Pathways on ROS Production. Nature Reviews Immunology.
; 10:210-215
Liu T, Zhang L, Joo D, Sun S. NF- κB signalling in inflammation. Signal
Transduction and Targeted Therapy 2. 2017; 17023
Lawrence T. The nuclear factor NF- κB pathway in inflammation. Cold Spring
Harb Perspect Biol. 2009;1(6): a001651
Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W et al. The emerging role of Toll- like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7(5): e2234.
Rivera-Serrano EE, Sherry B. NF-κB activation is cell type-specific in the
heart. Virology. 2016; 502:133–143
Virgilio FD, Ben DD, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in
Infection and Inflammation. Immunity. 2017; 47(1): 15-31
Kurtenbach S, Kurtenbach S, Zoidl G. Emerging functions of pannexin 1 in the eye. Front Cell Neurosci. 2014; 8:263
Liu, A., Gao, X., Zhang, Q., & Cui, L. Cathepsin B inhibition attenuates cardiac dysfunction and remodelling following myocardial infarction by inhibiting the NLRP3 pathway. Retraction in Molecular Medicine Reports. 2013; 8:361-366
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology. 2009; 11:136-140
Toldo S, Mezzaroma E, McGeough MD, Peña CA, Marchetti C, Sonnino C et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res. 2014; 105(2):203–212
Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce
NLRP3 inflammasome activation independently of Ca2+ signalling. J Immunol.
; 194(8):3937–3952
Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson GT. Chapter 46, Programmed Cell Death. Cell Biology, 3rd ed, pp 797-815. London, United Kingdom: Elsevier; 2017
Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S. P2X7 on Mouse T Cells: One Channel, Many Functions. Front Immunol. 2015; 6: 204
Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving Therapies for
Myocardial Ischaemia/Reperfusion Injury. 2015; 65(14):1454-1471
Xia P, Liu Y, Cheng Z. Signaling Pathways in Cardiac Myocyte
Apoptosis. Biomed Res Int. 2016; 2016: 9583268
Wang Y, Yan X, Mi S, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2016;
(1):4–12
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015; 78:100–
Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. The New England
Journal of Medicine. 2007; 357: 1121-1135
Monie TP. The Innate Immune System. A compositional and functional perspective. 2017; section 2: 41-42
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al. Pore-forming activity and
structural autoinhibition of the Gasmerdin family. Nature. 2016; 535(7610): 111-
Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C. Role of Pyroptosis in
Cardiovascular Disease. International Immunopharmacology. 2019; 67:311-
Sandanger Ø, Gao E, Ranheim T, Bliksøen M, Kaasbøll OJ, Alfsnes K, et al.
NLRP3 Inflammasome Activation during Myocardial Ischaemia Reperfusion is
Cardioprotective. Biochemical and Biophysical Research Communications.
; 469(4): 1012-1020
Shen Y, Qin J, Bu P. Pathways involved in interleukin-1β-mediated murine cardiomyocyte apoptosis. Tex Heart Inst J. 2015;42(2):109–116
Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart
disease. Arch Immunol Ther Exp (Warsz). 2009; 57(3):165–176
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018; 281(1):8–27
Van Hout GP, Bosch L, Ellenbroek GH, De Hanan JJ, Van Solinge WW, Cooper MA et al. The Selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017; 38(11):828-836
Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischaemia/reperfusion injury. J Am Coll Cardiol. 2015; 65(14):1454-1471
Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012; 16(3):123–132
Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S et al.
Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischaemia-reperfusion in the mouse. Int J Cardiol. 2016; 209:215-
Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018; 30(4):209–215
Jun JH, Shim J, Oh JE, Shin E, Shin E, Kwak Y. Protective effect of ethyl pyruvate against myocardial ischaemia reperfusion injury through regulations of ROS-related NLRP3 inflammasome activation. Oxidative Medicine and Cellular Longevity. 2019; 2019: 4264580
Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 2013;191(10):5230–5238
Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018;30(4):209–215
Lee HL, Chen CL, Yeh ST, Zweier JL, Chen YR. Biphasic modulation of the
mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2012; 302(7):H1410–H1422
Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007; 12(5): 912-922
Tonet E, Bernucci D, Morciano G, Campo G. Pharmacological protection of reperfusion injury in ST-segment elevation myocardial infarction. Gone with the wind?. Postepy Kardiol Interwencyjnej. 2018;14(1): 5–8
Hollander P. Anti-diabetes and anti-obesity medications: effects on weight in people with diabetes. Diabetes Spectrum. 2007; 20(3): 159-165
Marchetti C, Chojnacki J, Toldo S, et al. A novel pharmacologic inhibitor of the
NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol. 2014;63(4): 316–322
Hausenloy DJ, Baxter G, Bell R, et al. Translating novel strategies for
cardioprotection: The Hatter Workshop Recommendations. Basic Res Cardiol.
;105(6): 677–686
Baylis RA, Gomez D, Mallat Z, Pasterkamp G, Owens GK. The CANTOS
Trial: One Important Step for Clinical Cardiology but a Giant Leap for Vascular
Biology. Arterioscler Thromb Vasc Biol. 2017;37(11): e174–e177
DOI: http://dx.doi.org/10.7227//MMJ.0033
Copyright (c) 2020 Rachel Pathimagaraj
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.