The Role of Anti-Inflammatory Cytokines in Heart Failure

Rachel Pathimagaraj

Abstract


Coronary occlusion promotes a state of ischaemia that results in myocardial infarction; it  is  a  major  cause  of  mortality  accounting  for  one  hospital  admission  every  three minutes. At the site of infarct, sterile inflammation is initiated due to pro-inflammatory secretions from cardiac and innate immune cells. The focus of this review is to explore the role of a newly discovered innate immune complex, the nod-like receptor family pyrin domain containing 3 inflammasome. This review discusses the potential of this immune  complex  in  decreasing  the  proportion  of  functional  myocardium  during ischaemia   and   ischaemia-reperfusion   injury.   Due   to   the   central   role   of   this inflammasome  in  promoting  cardiac  dysfunction  following  an  acute  myocardial infarction,  the  risk  of  port-infarction  heart  failure  increases.  With  an  intention  of highlighting the importance of improving current management of patients with acute myocardial  infarction,  this  review  addresses  novel  therapeutic  agents  that  have demonstrated  cardioprotective  outcomes  in  recent  studies.  This  follows  discussion concerning the therapeutic potential of these agents, intending to form the basis of heart failure therapy.


Keywords


Heartfailure; Cytokines; Inflammation

References


British Heart Foundation CVD Statistics. Heart Statistics. Available from: https://www.bhf.org.uk/what-we-do/our-research/heart-statistics [Accessed 31

March 2019]

Kumar P, Clark K. Chapter 14, Cardiovascular Diease. Kumar & Clark's Clinical

Medicine, 8th ed, pp 717. London, United Kingdom: Elsevier; 2012.

Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3

Inflammasome in Heart Failure. J Card Fail. 2015;21(7):586–593

National Health Service. Number of new heart failure cases in the UK is on the rise. Available from: https://www.nhs.uk/news/heart-and-lungs/number-new- heart-failure-cases-uk-are-rise/ [Accessed 31 March 2019]

Moore KL, Agur AMR, Dalley AF. Arterial Supply of Heart. Clinically Oriented

Anatomy, 8th ed, pp 399. Philadelphia: Wolters Kluwer; 2018.

Gray GA, Toor IS, Castellan R, Crisan M, Meloni M. Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Current Opinion in Physiology. 2018; 1:46–51

Orogo AM, Gustafsson ÅB. Cell death in the myocardium: my heart won't go on. IUBMB Life. 2013;65(8):651–656

Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V et al. ROS-

Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis

Ischemia/Reperfusion Injury. Oxidative Medicine and Cellular Longevity. 2016;

: 2183026

Huded C, Kravitz K, Menon V, Gullet T, Hantz S, Ellis S et al. Impact of the CMS Algorithm for Door-To-Balloon Time Public Reporting on Door-To-Balloon Time Performance. Journal of the American College of Cardiology. 2018; 71:11

Suppl A116

Smith JN, Negrelli JM, Manek MB, Hawes EM, Viera AJ. Diagnosis and Management of Acute Coronary Syndrome: An Evidence-Based Update. J Am Board Fam Med. 2015; 28(2): 283-29

Montecucco F, C Federico, Schindler TH. Pathophysiology of ST-segment Elevation Myocardial Infarction: Novel Mechanisms and Treatments. European Heart Journal. 2016; 37(16): 1268–1283

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD.

Fourth universal definition of myocardial infarction. European Heart Journal.

; 40(3): 237–269

Rittoo D. Cardiac Troponin T Assay is Not Cardiac Specific. BMJ Journals. 2014

Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 2015;12(3):305–312

National Institute for Health and Care Excellence. Myocardial infarction with ST- segment elevation: acute management. Available from: https://www.nice.org.uk/guidance/CG167/chapter/1-Recommendations [Accessed 31 March 2019]

Toldo S, Abbate A. The NLRP3 Inflammasome in Acute Myocardial Infarction.

Nature Reviews Cardiology. 2017; 15:203-214

Rubartelli A, Lotze MT, Latz E, Manfredi A. Mechanisms of sterile inflammation. Front Immunol. 2013; 4:398

Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018; 186:73–87

Tamariz L, Hare JM. Inflammatory cytokines in heart failure: roles in aetiology and utility as biomarkers. European Heart Journal. 2010; 31(7):768–770

Wang J, Zhao L, Pan X, Chen N, Chen J, Gong Q. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF- β1 signalling pathway. Laboratory Investigation. 2016; 96:839-852

Schroder K, Tschopp J. The Inflammasomes. Cell. 2010; 140(6):821-832

Nishida K, Otsu K. Sterile Inflammation and Degradation Systems in Heart

Failure. Circulation Journal. 2017; 81(5):622-628

Lugrin J, Martinon, F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev. 2018; 281:99–114

Schroder K, Tschopp J. NLRP3 Inflammasome Activation: The Convergence of

Multiple Signalling Pathways on ROS Production. Nature Reviews Immunology.

; 10:210-215

Liu T, Zhang L, Joo D, Sun S. NF- κB signalling in inflammation. Signal

Transduction and Targeted Therapy 2. 2017; 17023

Lawrence T. The nuclear factor NF- κB pathway in inflammation. Cold Spring

Harb Perspect Biol. 2009;1(6): a001651

Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W et al. The emerging role of Toll- like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7(5): e2234.

Rivera-Serrano EE, Sherry B. NF-κB activation is cell type-specific in the

heart. Virology. 2016; 502:133–143

Virgilio FD, Ben DD, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in

Infection and Inflammation. Immunity. 2017; 47(1): 15-31

Kurtenbach S, Kurtenbach S, Zoidl G. Emerging functions of pannexin 1 in the eye. Front Cell Neurosci. 2014; 8:263

Liu, A., Gao, X., Zhang, Q., & Cui, L. Cathepsin B inhibition attenuates cardiac dysfunction and remodelling following myocardial infarction by inhibiting the NLRP3 pathway. Retraction in Molecular Medicine Reports. 2013; 8:361-366

Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology. 2009; 11:136-140

Toldo S, Mezzaroma E, McGeough MD, Peña CA, Marchetti C, Sonnino C et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res. 2014; 105(2):203–212

Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce

NLRP3 inflammasome activation independently of Ca2+ signalling. J Immunol.

; 194(8):3937–3952

Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson GT. Chapter 46, Programmed Cell Death. Cell Biology, 3rd ed, pp 797-815. London, United Kingdom: Elsevier; 2017

Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S. P2X7 on Mouse T Cells: One Channel, Many Functions. Front Immunol. 2015; 6: 204

Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving Therapies for

Myocardial Ischaemia/Reperfusion Injury. 2015; 65(14):1454-1471

Xia P, Liu Y, Cheng Z. Signaling Pathways in Cardiac Myocyte

Apoptosis. Biomed Res Int. 2016; 2016: 9583268

Wang Y, Yan X, Mi S, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2016;

(1):4–12

Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015; 78:100–

Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. The New England

Journal of Medicine. 2007; 357: 1121-1135

Monie TP. The Innate Immune System. A compositional and functional perspective. 2017; section 2: 41-42

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al. Pore-forming activity and

structural autoinhibition of the Gasmerdin family. Nature. 2016; 535(7610): 111-

Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C. Role of Pyroptosis in

Cardiovascular Disease. International Immunopharmacology. 2019; 67:311-

Sandanger Ø, Gao E, Ranheim T, Bliksøen M, Kaasbøll OJ, Alfsnes K, et al.

NLRP3 Inflammasome Activation during Myocardial Ischaemia Reperfusion is

Cardioprotective. Biochemical and Biophysical Research Communications.

; 469(4): 1012-1020

Shen Y, Qin J, Bu P. Pathways involved in interleukin-1β-mediated murine cardiomyocyte apoptosis. Tex Heart Inst J. 2015;42(2):109–116

Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart

disease. Arch Immunol Ther Exp (Warsz). 2009; 57(3):165–176

Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018; 281(1):8–27

Van Hout GP, Bosch L, Ellenbroek GH, De Hanan JJ, Van Solinge WW, Cooper MA et al. The Selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017; 38(11):828-836

Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischaemia/reperfusion injury. J Am Coll Cardiol. 2015; 65(14):1454-1471

Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012; 16(3):123–132

Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S et al.

Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischaemia-reperfusion in the mouse. Int J Cardiol. 2016; 209:215-

Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018; 30(4):209–215

Jun JH, Shim J, Oh JE, Shin E, Shin E, Kwak Y. Protective effect of ethyl pyruvate against myocardial ischaemia reperfusion injury through regulations of ROS-related NLRP3 inflammasome activation. Oxidative Medicine and Cellular Longevity. 2019; 2019: 4264580

Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 2013;191(10):5230–5238

Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018;30(4):209–215

Lee HL, Chen CL, Yeh ST, Zweier JL, Chen YR. Biphasic modulation of the

mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2012; 302(7):H1410–H1422

Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007; 12(5): 912-922

Tonet E, Bernucci D, Morciano G, Campo G. Pharmacological protection of reperfusion injury in ST-segment elevation myocardial infarction. Gone with the wind?. Postepy Kardiol Interwencyjnej. 2018;14(1): 5–8

Hollander P. Anti-diabetes and anti-obesity medications: effects on weight in people with diabetes. Diabetes Spectrum. 2007; 20(3): 159-165

Marchetti C, Chojnacki J, Toldo S, et al. A novel pharmacologic inhibitor of the

NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol. 2014;63(4): 316–322

Hausenloy DJ, Baxter G, Bell R, et al. Translating novel strategies for

cardioprotection: The Hatter Workshop Recommendations. Basic Res Cardiol.

;105(6): 677–686

Baylis RA, Gomez D, Mallat Z, Pasterkamp G, Owens GK. The CANTOS

Trial: One Important Step for Clinical Cardiology but a Giant Leap for Vascular

Biology. Arterioscler Thromb Vasc Biol. 2017;37(11): e174–e177




DOI: http://dx.doi.org/10.7227//MMJ.0033

Copyright (c) 2020 Rachel Pathimagaraj

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Manchester Open Library:
a partnership between Manchester University Press and The University of Manchester Library