Access provided by Rice University


Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, ASME J. of Heat Transfer, 1999, 121 (2), 280-289.
CrossRef
Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters, 2001, 78 (6), 718-720.
CrossRef
Xuan, Y. and Li, Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat and Fluid Flow, 2000, 21 (1), 58-64.
CrossRef
Zhou, D.W., Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation, Int. J. Heat and Mass Transfer, 2004, 47 (14-16), 3109-3117.
CrossRef
Patel, H.E., Das, S.K., Sundarrajan, T., Nair, A.S., George, B. and Pradeep, T., Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 2003, 83(14), 2931-2933.
CrossRef
Xuan, Y. and Roetzel, W,. Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat and Mass Transfer, 2000, 43 (19), 3701-3707.
CrossRef
Keblinski, P., Phillpot, S.R., Choi, S.U.S. and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids), Int. J. Heat and Mass Transfer, 2002, 45 (4), 855-863.
CrossRef
Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. of Heat Transfer, 2003, 125 (4), 567-574.
CrossRef
Hamilton, R.L. and Crosser, O.K., Thermal conductivity of heterogeneous two-component systems. I & EC Fundamentals 1, 1962, 182-191.
Wasp, F. J., Solid-Liquid Flow Slurry Pipeline Transportation, Trans. Tech. Pub., Berlin, 1977.
Maxwell-Garnett, J.C., Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A, 1904, 203, 385-420.
CrossRef
Bruggeman, D.A.G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Annalen der Physik. Leipzig, 1935, 24, 636-679.
Chon, H.C., Kihn, K.D., Lee, S.P. and Choi, S.U.S., Empirical correlation finding the role of temperature and particle size for nanofluid (Al203) thermal conductivity enhancement, Applied Physics Letters, 2005, 87, 153107.
Patel, H.E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N. and Das, S.K., A micro-convection model for thermal conductivity of nanofluid, Pramana-Journal of Physics, 2005, 65 (5), 863-869.
CrossRef
Khanafer, K., Vafai, K. and Lightstone, M., Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids, Int. J. Heat and Mass Transfer, 2003, 46 (19), 3639-3653.
CrossRef
Jou, R.Y. and Tzeng, S.C., Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, International Communications in Heat and Mass Transfer, 2006, 33 (6), 727-736.
CrossRef
Putra, N., Roetzel, W. and Das, S.K., Natural convection of nano-fluids, Heat and Mass Transfer, 2003, 39 (8-9), 775-784.
CrossRef
Wen, D. and Ding, Y., Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids), IEEE Transactions on Nanotechnology, 2006, 5 (May), 220-227
CrossRef
Nnanna, A.W.A., Experimental Model of Temperature-Driven Nanofluid, ASME J. of Heat Transfer, 2007, 129 (6), 697-704.
CrossRef
Kwak, K. and Kim, C., Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheology Journal, 2005, 17 (2), 35-40.
Chang, H, Jwo, C.S., Lo, C.H., Tsung, T.T., Kao, M.J. and Lin, H.M., Rheology of CuO nanoparticle suspension prepared by ASNSS, Rev. Adv. Material Science, 2005, 10, 128-132.
Ding, Y., Alias, H., Wen, D. and Williams, R.A., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat and Mass Transfer, 2006, 49 (1-2), 240-250.
CrossRef
Santra, A.K., Sen, S. and Chakraborty, N., Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity using Copper-Water Nanofluid, Int. J. Thermal Sciences, 2008, 47 (9), 1113-1122.
CrossRef
Bird, R.B., Stewert, W.E. and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons, Singapore, 1960.
Patankar, S.V, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D. C., 1980.
de Vahl Davis, G., Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Numer. Methods Fluids, 1962, 3, 249-264.
CrossRef
< >

Issue Details

International Journal of Emerging Multidisciplinary Fluid Sciences


International Journal of Emerging Multidisciplinary Fluid Sciences

Print ISSN: 1756-8315

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers