Access provided by Rice University


Bull, J.L., Cardiovascular Bubble Dynamics, Critical Reviews in Biomedical Engineering, 2005, 33(4) 299-346.
CrossRef
Ye, T., Bull, J. L., Direct Numerical Simulations of Micro-bubble Expansion in Gas Embolotherapy, Journal of Biomechanical Engineering, 2004, 126(6) 745-759.
CrossRef
Kripfgans, O.D., Fowlkes, J.B., Miller, D.L., Eldevik, O.P., and Carson, P.L., Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications, 2000, Ultrasound in Medicine & Biology, 2000, 26(7), 1177-1189.
CrossRef
Kripfgans, O.D., Fowlkes, J.B., Woydt, M., Eldevik, O.P., Carson, P.L., In Vivo Droplet Vaporization for Occlusion Therapy and Phase Aberration Correction, IEEE Transactions on Ultrasonics Ferroelectrics And Frequency Control, 2002, 49(6), 726-738.
CrossRef
Kripfgans, O.D., Fabiili, M.L., Carson, P.L., Fowlkes, J.B., On the Acoustic Vaporization of Micrometer-sized Droplets, Journal of the Acoustical Society of America, 2004, 116(1), 272-281.
CrossRef
Cavanagh, D.P., Eckmann, D.M., Interfacial Dynamics of a Stationary Gas Bubble in Flows in Inclined Tubes, Journal of Fluid Mechanics, 1999, 398, 225-244.
CrossRef
Cavanagh, D.P., Eckmann, D.M., The Effects of Soluble Surfactant on the Interfacial Dynamics of a Stationary Bubble in Inclined Tubes, Journal of Fluid Mechanics, 2002, 469, 369-400.
Maneri, C.C., Zuber, N., An Experimental Study of Plane Bubbles Rising at an Inclination, International Journal of Multiphase Flow, 1974, 1, 623-645.
CrossRef
Masliya, J., Jauhari, R., Gray, M., Drag Coefficients for Air Bubbles rising along an Inclined Surface, Chemical Engineering Science, 1994, 49(12), 1905-1911.
CrossRef
Maxworthy T., Bubble Rise under an Inclined Plate, Journal of Fluid Mechanics, 1991, 229, 659-674.
CrossRef
Tsao, H.K., Koch, D.L., Observations of High Reynolds Number Bubbles Interacting with a Rigid Wall, Physics of Fluids, 1997, 9 (1), 44-56.
CrossRef
Zukoski, E.E., Influence of Viscosity, Surface Tension and Inclination Angle on Motion of Long Bubbles in Closed Tubes, Journal of Fluid Mechanics, 1966, 25(4), 821-837.
CrossRef
Eshpuniyani, B., Fowlkes, J.B., Bull, J.L., A Bench Top Experimental Model of Bubble Transport in Multiple Arteriole Bifurcations, International Journal of Heat and Fluid Flow, 2005, 26(6), 865-872.
CrossRef
Lelkes, P. I., Mechanical Forces and the Endothelium, Harwood, Amsterdam, 1999.
Dewey, Jr., C.F., Bussolari, S.R., Gimbrone, Jr., M.A., Davies, P.F., The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress, ASME Journal of Biomechanical Engineering, 1981, 103(3), 177-185.
CrossRef
Nerem, R.M., Levesque, M.J., and Cornhill, J.F., Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow, ASME Journal of Biomechanical Engineering, 1981, 103(3), 172-176.
CrossRef
Levesque, M.J., and Nerem, R.M., The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress, ASME Journal of Biomechanical Engineering, 1985, 107(4), 341-347.
CrossRef
Franke, R.P., Grafe, M., Schnittler, H., Seiffge, D., Mittermayer, C., and Drenckhahn, D., Induction of Human Vascular Endothelial Stress Fibers by Fluid Shear Stress, Nature, 1984, 307, 648-649.
CrossRef
Kim, D.W., Gotlieb, A.I., and Langille, B.L., In Vivo Modulation of Endothelial f-Actin Microfilaments by Experimental Alterations in Shear Stress, 1989, Atherosclerosis, 9, 439-445.
Ookawa, K., Sato, M., and Ohshima, N., Changes in the Microstructure of Cultured Porcine Aortic Endothelial Cell in the Early Stage After Applying a Fluid-Imposed Shear Stress, ASME Journal of Biomechanical Engineering, 1992, 25(11), 1321-1328.
Olesen, S. P., Clapham, D. E., and Davies, P. F., Haemodynamic Shear Stress Activates a K+ Current in Vascular Endothelial Cells, Nature, 1988, 331, 168-170.
CrossRef
Davies, P.F., Robotewskyj, A., Griem, M.L., Dull, R.O., and Polacek, D.C., Hemodynamics Forces and Vascular Cell Communication in Arteries, Archives of Pathology & Laboratory Medicine, 1992, 116(12), 1301-1306.
Davies, P.F., and Tripathi, S.C., Mechanical Stress Mechanisms and the Cell: an Endothelial Paradigm, Circulation Research, 1993, 72, 239-245.
CrossRef
Nollert, M.N., Diamond, S.L., and McIntire, L.V., Hydrodynamic Shear Stress and Mass Transport Modulation of Endothelial Cell Metabolism, Biotechnology and Bioengineering, 1991, 38(6), 588-602.
CrossRef
Shyy, Y.J., Hsieh, H.J., Usami, S., and Chien, S., Fluid Shear Stress Induces a Biphasic Response of Human Monocyte Chemotactic Protein 1 Gene Expression in Vascular Endothelium, Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(11), 4678-4682.
CrossRef
Ye, T., Bull, J.L., Microbubble Expansion in a Flexible Tube, ASME Journal of Biomechanical Engineering, 2006, 128(4), 554-563.
CrossRef
Eshpuniyani, B., Bull, J.L., A Boundary Element Model of Vascular Gas Bubble Sticking and Sliding, in: Brebbia, C.A., ed, Modeling in Medicine and Biology, WIT Press, Southampton, 2005.
Eshpuniyani, B., Fowlkes, J.B., and Bull, J.L, A Boundary Element Model of Microbubble Sticking and Sliding in the Microcirculation, International Journal of Heat and Mass Transfer, 2008, 51(23-24), 5700-5711.
CrossRef
Pozrikidis, C., Numerical Simulation of Cell Motion in Tube Flow, Annals of Biomedical Engineering, 2004, 33(2), 165-178.
CrossRef
Greenspan, H.P., On the Motion of a Small Viscous Droplet That Wets a Surface, Journal of Fluid Mechanics, 1978, 84(1), 125-143.
CrossRef
Brebbia, C.A., Boundary Elements: An Introductory Course, WIT Press, UK, 1992.
Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, United States of America, 1992.
< >

Issue Details

International Journal of Emerging Multidisciplinary Fluid Sciences


International Journal of Emerging Multidisciplinary Fluid Sciences

Print ISSN: 1756-8315

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers