Access provided by Rice University


Kimura, J., Electrodiagnosis in Diseases of Muscle and Nerve: Principles and Practice, 3rd edition, Philiiadelphia, F. A. Davis, 2001.
Stieglitz, T., Meyer, J.-U., Neural Implants in Clinical Practice. In: Urban, G. A. (Ed.) BIOMEMS, Dordrecht: Springer-Verlag, 2006, 41-70.
Stieglitz T., Meyer, J.-U.: "Biomedical Microdevices for Neural Implants". In: Ur-ban, G. A. (Ed.) BIOMEMS. Dordrecht: Springer-Verlag, 2006, 71-138.
Stieglitz, T., Development of a Micromachined Epiretinal Vision Prosthesis, Journal of Neural Engineering, 2009, 6 (6), 065005, 11 pages.
Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P., Schuettler, M., Brain-Computer Interfaces: An Overview of the Hardware to Record Neural Signals from the Cortex. Progress in Brain Research. 2009, 175, 297-315.
Kipke, D. R., Shain, W., Buzsaki, G, Fetz, E., Hendersin, J. M., Hetke, J. F., Schalk, G., Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities, Journal of Neuroscience, 2008, 28(46), 11830-11838.
CrossRef
Lebedev, M. A., Nicolelis, M. A. L., Brain-machine interfaces: past, present and future. Trends in Neurosciences, 2006, 29, 536-546.
CrossRef
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006, 442, 164-171.
CrossRef
Albert, G. C., Cook, C. M., Prato, F. S., Thomas. A. W., Deep Brain Stimulation, Vagal Nerve Stimulation and Transcranial Stimulation: An Overview of Stimulation Parameters and Neurotransmitter Release. Neuroscience and Biobehavioral Reviews, 2009, 33, 1042-1060.
CrossRef
Urban, G. A, Micro- and Nanobiosensors - State of the Art and Trends, Measurement Science and Technology, 2009, 20, 012001 (18 pages).
CrossRef
Wilson, G. S., Gifford, R., Biosensors for real time in vivo measurements; Biosensors and Bioelectronics, 2005, 20, 2388-2403.
CrossRef
Metz, S., Bertsch, A., Bertrand, D., Renaud, P., Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosensors and Bioelectronics, 2004, 19(10), 1309-1318.
CrossRef
Zhang, M., Mao, L., Enzyme based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Frontiers in Bioscience, 2005, 10, 345-352.
CrossRef
Frey, O., Holtzman, T., McNamara, R., Theobald, D. E. H., van der Wal, P. D., de Rooij, N. F., Dalley, J. W., Koudelka-Hep, Electrochemically aided adsorption: enzyme-based choline and glutamate biosensors for silicon microprobe arrays" Biosensors and Bioelectronics (2009).
Sekioka, N., Kato, D., Kurita, R., Hirono, S., Niwa, O., Improved detection limit for an electrochemical γ-aminobutyric acid sensor based on stable NADPH detection using electron cyclotron resonance sputtered carbon film electrode. Sensors and Actuators B- Chemical, 2008, 129, 442-449.
CrossRef
Keller, C. J., Casha, S. S., Narayanana, S. Wang, C., Kuzniecky, R., Carlson, C., Devinsky, O., Thesen, T., Doyle, W., Sassaroli, A., Boas, D. A., Ulbert, I.,. Halgren, E, Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex, Journal Neuroscience Methods, 2009, 179, 208-218.
CrossRef
Zhu, T. C., Finlay, J. C,. Hahn, S. M., Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo", Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 231-241.
CrossRef
Williams, D. F., On the Nature of Biomaterials. Biomaterials, 2009, 30, 5897-5909.
CrossRef
Williams, D. F., On the Mechanisms of Biocompatibility. Biomaterials, 2008, 29, 2941-2953.
CrossRef
Merrill, D. R., Bikson, M., Jeffreys, J. G. R., Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. Journal of Neuroscience Methods, 2005, 141, 171-198.
CrossRef
Mirsky, V. M., Riepl, M., and Wolfbeis, O. S. (1997). Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997, 12, 977-989.
CrossRef
Grill, W. M. and Mortimer, J. T., (1994). Electrical Properties of Implant Encapsulation Tissue. Annals of Biomedical Engineering, 1994, 22, 23-33.
CrossRef
Duan, Y. Y., Clark, G. M., and Cowan, R. S. C., A Study of Intra-Cochlear Electrodes and Tissue Interface by Electrochemical Impedance Methods In Vivo. Biomaterials, 2004, 25, 3813-3828.
CrossRef
Williams, J. C., Hippensteel, J. A., Dilgen, J., Shain, W. G., and Kipke, D. R., Complex Impedance Spectroscopy for Monitoring Tissue Responses to Inserted Neural Implants. Journal of Neural Engineering, 2007, 4, 410-423.
CrossRef
Mercanzini, A., Colin, P., Bensadoun, J.-C., Bertsch, A., and Renaud, P., In Vivo Electrical Impedance Spectroscopy of Tissue Reaction to Microelectrode Arrays. IEEE Transactions on Biomedical Engineering, 2009, 56, 1909-1918.
CrossRef
Rohatgi, P., Langhals, N. B., Kipke, D. R., Patil, P. G., In vivo performance of a microelectrode neural probe with integrated drug delivery, Neurosurgical Focus, 2009, 27(1), E8 (11 pages).
Papageorgiou, D. P., Shore, S. E., Bledsoe, S. C., Wise, K. D., A Shuttered Nerual Probe with on Chip Flowmeters for Chronic In Vivo Drug Delivery. IEEE/ASME Journal of Microelectromechanical Systems, 2006, 15(4), 1025-1033.
CrossRef
Wise, K. D., Angell, J. B., & Starr, A., An integrated circuit approach to extracellular microelectrodes. The 8th ICMBE, Palmer House, Chicago, IL, July 20, 1969. Digest of the 8th ICMBE, 1969, 1, 14.
Nordhausen, C. T., Maynard, E. M., Normann, R. A., Single unit recording capabilities of a 100 microclectrode array. Brain Research, 1996, 726, 129-140.
CrossRef
Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., Najafi, K., Wireless implantable microsystems: high denisity electronic interfaces to the nervous system. Proceedings of the IEEE, 2004, 92, 76-96.
CrossRef
Neves, H. P.; Ruther, P., The NeuroProbes Project, Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 6442-6444.
Rousche, P. J., Pellinen, D. S., Pivin, D. P. Jr., Williams, J. C., Vetter, R. J., Kipke, D. R. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Transactions Biomedical Engineering 2001, 48(3),361-371.
CrossRef
Stieglitz, T., Gross, M., Flexible BIOMEMS with Electrode Arrangements on Front and Back Side as Key Component in Neural Prostheses and Biohybrid Systems, Sensors and Actuators B-Chemical, 2002, 83, 8-14.
CrossRef
Takahashi, H., Ejiri, T., Nakao, M., Nakamura, N., Kaga, K., Herve, T., Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Transactions on Biomedical Engineering, 2003, 50, 510-516.
CrossRef
Mercanzini, A., Cheung, K., Buhl, D. L., Boers, M., Maillard, A., Colin, P., Bensadoun, J.-C., Bertsch, A., Renaud, P., Demonstration of cortical recording using novel flexible polymer neural probes, Sensors and Actuators A, 2008, 143, 1(2), 90-96.
CrossRef
Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W., Normann, R. A., A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Transactions on Biomedical Engineering, 1991, 38, 758-768.
CrossRef
Bai, Q., Wise, K. D., Anderson, D. J., A High-Yield Microassembly Structure for Three-Dimensional Microelectrode Arrays, IEEE Transactions on Biomedical Engineering, 2000, 47(3), 281-289.
CrossRef
Najafi, K., Wise, K. D. An implantable multielectrode array with on-chip signal processing. IEEE Journal of Solid-State Circuits, 1986, 21, 1035-1044.
CrossRef
Kisban, S., Herwik, S., Seidl, K., Rubehn, B., Jezzini, A., Umiltà, M. A., Fogassi, L., Stieglitz, T., Paul, O., Ruther, P., Microprobe Array with Low Impedance Electrodes and Highly Flexible Polyimide Cables for Acute Neural Recording, Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 175-178.
Stieglitz, T., Beutel, H., Schuettler, M., & Meyer, J.-U., Micromachined, polyimide-based devices for flexible neural interfaces. Biomedical Microdevices, 2000, 2, 283-294.
CrossRef
Cheung, K. C., Renaud, P., Tanila, H., Djupsund, K., Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8),1783-1790.
CrossRef
Stieglitz, T., Hoffmann, R., Kaminsky, J. Investigations on mechanical properties of polyimide-based shaft electrodes for intracortical neural interfaces, in prep., 2009
Polikov, V. S., Tresco, P. A., & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 2005, 148, 1-18.
CrossRef
Menz, W., Mohr, J., Paul, O., Microsystem Technology, Wiley-VCH, 2001.
Steigert, J., Brett, O., Muller, C., Strasser, M., Wangler, N., Reinecke, H., Daub, M., Zengerle, R. A Versatile and Flexible Low-temperature Full-wafer Bonding Process of Monolithic 3D Microfluidic Structures in SU-8, Journal of Micromechanics and Microengineering, 2008, 18(), 1-8.
Hu, M., Lindemann, T., Gottsche, T., Kohnle, J., Zengerle, R., Koltay, P., Discrete Chemical Release from a Microfluidic Chip, Journal of Microelectromechanical Systems, 2007, 16(4), 786-794.
CrossRef
Fernandez, L. J., Tijero, M., Vilares, R., Berganzo, J., Mayora, K., Blanco, F. J., SU-8 Based Microneedle for Drug Delivery in Nanomedicine Applications with Integrated Electrodes, [9], 2007, pp. 1720-1722.
Sparks, D. Hubbard, T., Micromachined Needles and Lancets with Design Adjustable Bevel Angles, Journal of Micromechanics and Microengineering, 2004, 14 (8), 1230-1233.
CrossRef
Lee, C. C. Wang, C. Y., A Low-temperature Bonding Process Using Deposited Gold TiN Composites, Thin Solid Films, 1992, 208 (2), 202-209.
CrossRef
Kutchoukov, V. G., Laugere, F., van der Vlist, W., Pakula, L., Garini, Y., Bossche, A., Fabrication of Nanofluidic Devices Using Glass-to-Glass Anodic Bonding, Sensors and Actuators A-Physical, 2004, 114 (2-3), 521-527.
CrossRef
Xue, Z. L. Qiu, H. H, Integrating Micromachined Fast Response Temperature Sensor Array in a Glass Microchannel, Sensors and Actuators A-Physical, 2005, 122 (2) 189-195.
CrossRef
Shih, W. P., Hui, C. Y., Tien, N. C., Collapse of Microchannels During Anodic Bonding: Theory and Experiments, Journal of Applied Physics, 2004, 95 (5), 2800-2808.
CrossRef
Chen, J. K., Wise, K. D., Hetke, J. F., Bledsoe, S. C., A Multichannel Neural Probe for Selective Chemical Delivery at the Cellular Level, IEEE Transactions on Biomedical Engineering, 1997, 44 (8), 760-769.
CrossRef
Cheung, K. C., Djupsund, K. Dan, Y. Lee, L. P., Implantable Multichannel Electrode Array Based on SOI Technology, Journal of Microelectromechanical Systems, 2003, 12 (2), 179-184.
CrossRef
Dijkstra, M., de Boer, M. J., Berenschot, J. W.,. Lammerink, T. S. J, Wiegerink, R. J., Elwenspoek, M., A Versatile Surface Channel Concept for Microfluidic Applications, Journal of Micromechanics and Microengineering, 2007, 17, 1971-1977.
CrossRef
de Boer, M. J., Tjerkstra, R. W., Berenschot, J. W., Jansen, H. V., Burger, C. J., Gardeniers, J. G. E., Elwenspoek, M., van den Berg, A., Micromachining of Buried Microchannels in Silicon, Journal of Microelectromechanical Systems, 2000, 9 (1), 94-103.
CrossRef
Papautsky, I. Brazzle, J., Swerdlow, H., Frazier, A. B., A Low-temperature IC-Compatible Process for Fabricating Surface-micromachined Metallic Microchannels, Journal of Microelectromechanical Systems, 1998, 7 (2), 267-273.
CrossRef
Lin, L. W., and Pisano, A. P., Silicon-processed Microneedles, Journal of Microelectromechanical Systems, 1999, 8 (1), 78-84.
CrossRef
Metz, S., Holzer, R., Renaud, P., Polyimide-based microfluidic devices. Lab Chip, 2001, 1(1), 29-34.
CrossRef
Takeuchi, S., Ziegler, D., Yoshida, Y., Mabuchi, K., Suzuki, T., Parylene flexible neural probes integrated with microfluidic channels. Lab on a Chip, 2005, 5, 519-523.
CrossRef
Metz, S., Jiguet, S., Bertsch, A., Renaud, P., Polyimide and SU-8 Microfluidic Devices Manufactured by Heat-depolymerizable Sacrificial Material Technique, Lab on a Chip, 2004, 4 (2), 114-120.
CrossRef
Psoma, S. D., Jenkins, D. W., Comparative Assessment of Different Sacrificial Materials for Releasing SU-8 Structures, Reviews on Advanced Materials Science, 2005, 10 (2), 149-155.
Tay, F. E. H., van Kan, J. A., Watt, F., Choong, W. O., A Novel Micro-machining Method for the Fabrication of Thick-film SU-8 Embedded Micro-channels, Journal of Micromechanics and Microengineering, 2001, 11 (1), 27-32.
CrossRef
Hirai, Y., Inamoto, Y., Sugano, K., Tsuchiya, T., Tabata, O., Moving mask UV lithography for three-dimensional structuring, Journal of Micromechanics and Microengineering, 2007, 17 (2), 199-206.
CrossRef
Chung, C., Allen, M., Uncrosslinked SU-8 as a Sacrificial Material, Journal of Micromechanics and Microengineering, 2005, 15 (1), N1-N5.
CrossRef
Alderman, B. E. J., Mann, C. M., Steenson, D. P., Chamberlain, J. M., Microfabrication of Channels Using an Embedded Mask in Negative Resist, Journal of Micromechanics and Microengineering, 2001, 11 (6), 703-705.
CrossRef
Woias, P., Micropumps—past, progress and future prospects. Sensors and Actuators B, 2005, 105, 28-38.
CrossRef
Melin, J., Quake, S. R., Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. Annual Reviews of Biophysical and Biomolecular Structures, 2007, 36, 213-231.
Iverson, B. D., Garimella, S. V., Recent Advances in Microscale Pumping Technologies: A Review and Evaluation. Microfluidics and Nanofluidics, 2008, 5, 145-174.
CrossRef
Amirouche, F., Zhou, Y., Johnson, T., Current micropump technologies and their biomedical applications. Microsystem Technolologies, 2009, 15, 647-666
Nisar, A., Afzulpurkar, N., Mahaisavariya, B., Tuantranont, A., MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B, 2008, 130, 917-942
CrossRef
Laser, D. J,. Santiago, J. G., A review of micropumps. J. Micromechanics and Microengineering, 2004, 14, R35-R64.
CrossRef
Nandi, P., Lunte, S. M., Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: A review. Analytica Chimica Acta, 2009, 651, 1-14.
CrossRef
Dale, N., Hatz, S., Tian, F., Llaudet, E., Listening to the brain: microelectrode biosensors for neurochemicals. Trends in Biotechnology, 2005, 23 (8), 420-428.
CrossRef
van der Zeyden, M., Oldenziel, W. H., Rea, K., Cremers, T. I., Westerink, B. H., Microdialysis of GABA and glutamate: Analysis, interpretation and comparison with microsensors. Pharmacology, Biochemistry and Behavior, 2008, 90, 135-147.
CrossRef
Razzacki, S. Z., Thwar, P. K., Yang, M., Ugaz, V. M, Burns, M. A., Integrated microsystems for controlled drug delivery. Advanced Drug Delivery Reviews, 2004, 56, 185-198.
CrossRef
Retterer, S. T., Smith, K. L., Bjornsson, C. S., Neeves, K. B., Spence, A. J., Turner, J. N., Shain, W., Isaacson, M. S., Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses. IEEE Transactions on Biomedical Engineering, 2004, 51(11), 2063-2073.
CrossRef
Retterer, S. T., Smith, K. L., Bjornson, C. S., Turner, J. N., Isaacson, M. S., Shain, W., Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices. Journal of Neural Engineering, 2008, 5, 385-391.
CrossRef
< >

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers