Access provided by Rice University


P. Neuzil, C. Y. Zhang, J. Pipper, S. Oh, L. Zhuo, Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes, Nucleic Acids Res. 34(11) (2006) e77.
CrossRef
J. S. Marcus, W. F. Anderson, S. R. Quake, Parallel picoliter RT-PCR assays using microfluidics, Anal. Chem. 78 (3) (2006) 956-958.
CrossRef
K. Y. Lien, W. Y. Lin, Y. F. Lee, C. H. Wang, H. Y. Lei, and G. B. Lee, Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification, J. Microelectromech. Syst. 17 (2) (2008) 288-301.
CrossRef
Z. Q. Niu, W. Y. Chen, S. Y. Shao, X. Y. Jia, W. P. Zhang, DNA amplification on a PDMS-glass hybrid microchip, J. Micromech. Microeng. 16 (2) (2006) 425-433.
CrossRef
D. S. Lee, S. H. Park, K. H. Chung, H. B. Pyo, A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification, IEEE Sens. J. 8 (5-6) (2008) 558-564.
CrossRef
G. V. Kaigala, V. N. Hoang, A. Stickel, J. Lauzon, D. Manage, L. M. Pilarski, C. J. Backhouse, An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis, Analyst 133 (3) (2008) 331-338.
CrossRef
D. S. Lee, S. H. Park, K. H. Chung, H. B. Pyo, A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification, IEEE Sens. J. 8 (5-6) (2008) 558-564.
CrossRef
C. S. Zhang, D. Xing, Y. Y. Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends, Biotechnol. Adv. 25 (5) (2007) 483-514.
CrossRef
A. Jahn, W. N. Vreeland, M. Gaitan, L. E. Locascio, Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing, J. Am. Chem. Soc. 126 (9) (2004) 2674-2675.
CrossRef
T. Thorsen, R. W. Roberts, F. H. Arnold, S. R. Quake, Dynamic pattern formation in a vesiclegenerating microfluidic device, Phys. Rev. Lett. 86 (18) (2001) 4163-4166.
CrossRef
L. J. Kricka, P. Wilding, Microchip PCR, Anal. Bioanal. Chem. 377 (5) (2003) 820-825.
CrossRef
A. Pandey, M. Mann, Proteomics to study genes and genomes, Nature 405 (6788) (2000) 837-846.
CrossRef
Y. J. Kim, Y. K. Joshi, A. G. Fedorov, Y. J. Lee, S. K. Lim, Thermal characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux, Journal of Heat Transfer 132 (2010), 041009.
CrossRef
K. A. Cook-Chennault, N. Thambi and A. M. Sastry, Powering MEMS portable devices-a review of non-regenerative power supply systems with special enphasis on piezoelectric energy harvesting systems, Smart Mat. and Struct. 17, (2008), 043001.
CrossRef
C. Zhang, J. Xu, W. Ma., W. Zheng, PCR Microfluidic devices for DNA amplification, Biotech. Adv. 24, (2006) 243-284.
CrossRef
N. Crews, C. Wittwer, R. Palais and B. Gale, Product differentiation during continuous-flow thermal gradient PCR, Lab On a Chip 8, (2008), 919-924.
CrossRef
C. Y. Lee, G. B. Lee, H. H. Liu, F. C. Huan, MEMS-based Temperature Control Systems for DNA Amplification, Int. J. Nonlinear Sci. and Num. Sim. 3, (2002) 215-218.
D. Ross, M. Gaitan, L. E. Locascio, Temperature measurement in microfluidic systems using a temperature dependent fluorescent dye, Anal. Chem. 73 (17) (2001) 4117-4123.
CrossRef
A. M. Chaudhari, T. M. Woundenberg, M. Albin, K. E. Goodson, Transient liquid crystal thermometry of microfabricated PCR vessel arrays, JMEMS 7 (4) (1998), 345-355.
R. Muthyala, Chemistry and applications of leuco dyes, Plenum Press (1997).
F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, Introduction to Heat Transfer, Wiley (2006).
< >

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers