Moore, G., Cramming more components onto integrated circuits. Electronics Magazine, 1965, 38(8). | |
Pradeep, T., NANO: The Essentials-Understanding Nanoscience and Nanotechnology, Tata McGraw-Hill, 1965, New Delhi. | |
Sobhan, C. B., and Peterson, G. P., Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications, CRC Press, 2008, New York. | |
Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., Nanoscale thermal transport, Journal of Applied Physics, 2003, 93, p. 793. CrossRef | |
Pop, E., and Goodson, K. E., Thermal phenomena in nanoscale transistors, ASME Journal of Electronic Packaging, 2006, 128, p. 102. CrossRef | |
Cahill, D. G., Goodson, K. E., and Majumdar, A., Thermometry and thermal transport in micro/nanoscale solid-state devices and structures, ASME Journal of Heat Transfer, 2002, 124, p. 223. CrossRef | |
Baillis, D., and Randrianalisoa, J., Prediction of thermal conductivity of nanostructures: Influence of phonon dispersion approximation, International Journal of Heat and Mass Transfer, 2009, 52, p. 2516. CrossRef | |
Chung, J. D., McGaughey, A. J. H., and Kaviany, M., Role of phonon dispersion in lattice thermal conductivity modeling, Journal of Heat Transfer, 2004, 126, p. 376. CrossRef | |
Srivastava, G. P., The Physics of Phonons, Adam Hilger, 1990, Bristol. | |
Dove, M. T., Introduction to Lattice Dynamics, Cambridge University Press, 1993, Cambridge. | |
Haile, J. M., Molecular dynamics simulation. Elementary methods, John Wiley & Sons, 1992, New York. | |
Sadus, R. J., Molecular simulation of fluids- Theory, Algorithms and Object-orientation, Elsevier Science B V, 2002, Amsterdam. | |
Thomas, J. A., Turney, J. E., Iutzi, R. M., Amon, C. H., and McGaughey, A. J. H., Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B, 2010, 81, p. 081411. CrossRef | |
Plimpton, S., Fast parallel algorithms for short range molecular dynamics, J Comp Phys, 1995, 117, p. 1. CrossRef | |
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnot, S. B., A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, J. Phys: Condensed Matter, 2002, 14, p. 783. CrossRef | |
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L., Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 729, p. 926. | |
Hummer, G., Rasaiah, J. C., and Noworyta, J. P., Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 2001, 414, p. 188. CrossRef | |
Wojdyr, M., Fityk: A general purpose peak-fitting program, J. Applied Crystallography, 2010, 43, p. 1126. CrossRef | |
Pascal, T. A., Goddard, W. A., and Jung, Y., Entropy and the driving force for the filling of cabon nanotubes with water, PNAS, 2011, 108, p. 11794. CrossRef |
Effect of Confined Fluid Interaction on the Thermal Transport in Carbon Nanotubes
T. KrishnanRelated information
1 School of Nano Science and Technology, National Institute of Technology Calicut, Kerala
, Jeetu BabuRelated information1 School of Nano Science and Technology, National Institute of Technology Calicut, Kerala
, Sarith SathianRelated information2 Department of Applied Mechanics, IIT Madras, Chennai