Access provided by CLOCKSS


H. A. Stone, S. Kim, Microfluidics: Basic issues, applications, and challenges. AIChE J., 47, 2001, 1250-1254.
CrossRef
G. M. Whitesides, A. D. Stroock, Flexible methods for microfluidics. Phys. Today, 54, 2001, 42-48.
D. J. Beebe, A. G. Mensing, G. M. Walker, Physics and applications of microfluidics in bology. Annu. Rev. Biomed. Eng., 4, 2002, 261-286.
CrossRef
H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech., 36, 2004, 381-411.
CrossRef
J. C. T. Eijkel, A. van den Berg, Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid., 1, 2005, 249-267.
CrossRef
S. Ghosal, Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech., 38, 2006, 309-338.
CrossRef
G. M. Whitesides, The origins and the future of microfluidics. Nature, 442, 2006, 368-373.
CrossRef
S. Pennathur, J. C. T. Eijkel, A. van den Berg, Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip., 7, 2007, 1234-1237.
CrossRef
P. Abgrall, N. T. Nguyen, Nanofluidic devices and their applications, Anal. Chem., 80, 2008, 2326-2341
CrossRef
W. Sparreboom, A. van den Berg, J. C. T. Eijkel, Principles and applications of nanofluidic transport, Nature Nanotech., 4, 2009,713-720
CrossRef
W. Sparreboom, A. van den Berg, J. C. T. Eijkel, Transport in nanofluidic systems: a review of theory and applications, New J. Phys., 12, 2010, 015004
CrossRef
R. B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 2008, 839-882.
CrossRef
R. J. Hunter, Zeta potential in colloid sciences: Principles and applications; Academic Press, London, 1981.
R. J. Hunter, Foundations of Colloid Science. 2nd Edition. Oxford University Press, Cambridge, 2000.
R. F. Probstein, Physicochemical Hydrodynamics, 2nd edn. Hoboken, New Jersey: Wiley-Interscience, 2003.
G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation. Springer Science, New York, USA, 2005.
P. M. Reppert, F. D. Morgan, Temperature dependent streaming potential: 1. Theory, J. Geophys. Res., 108, 2003, 2546
S. P. Fritton, S. Weinbaum, Fluid and solute transport in bone: Flow induced mechanotransduction, Annu. Rev. Fluid Mech., 41, 2009, 347-374.
CrossRef
R. J. Hunter I and A. E. Alexander, Some notes on the measurement of electrokinetic potentials, J. Colloid Sci., 17, 1962, 781-788
CrossRef
G. K. Korpi, P. L. de Bruyn, Measurement of streaming potentials, J. Colloid Interface Sci., 40, 1972, 263-266.
E. Donath, A. Voigt, Streaming current and streaming potential on structured surfaces, J. Colloid Interface Sci., 109, 1986, 122-139
I. B. Oldham, F. J. Young, J. F. Osterle, Streaming potential in small capillaries, J. Colloid Sci., 18, 1963, 328-336
CrossRef
J. F. Osterle, Electro-kinetic energy conversion. J. Appl. Mech., 31, 1964, 161-164.
CrossRef
F. A. Morrison Jr., J. F. Osterle, Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Phys., 43, 1965, 2111-2115
CrossRef
D. J. Griffiths, Introduction to electrodynamics. Prentice Hall, New Jersey, 1998.
S. Chakraborty, Microfluidics and Microfabrication. Springer, London, 2010
J. N. Israelachvili, Intermolecular and Surface Forces. 3rd Edition. Academic Press, London, 2011.
I. Borukhov, D. Andelman, H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev, Lett., 79, 1997, 435-438
CrossRef
I. Borukhov, D. Andelman, H. Orland, Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation, Electrochimica Acta, 46, 2000, 221-229
CrossRef
K. Bohinc, V. K. Iglic, A. Iglic, Thickness of electrical double layer. Effect of ion size, Electrochimica Acta, 46, 2001, 3033-3040
CrossRef
S. Woelki, H. H. Kohler, A modified Poisson-Boltzmann equation I. Basic relations, Chemical Physics, 261, 2000, 411-419.
CrossRef
S. Chakraborty, S. Das, Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit, Phys. Rev. E, 77, 2008, 037303.
CrossRef
A. J. Rutgers, M. De Smet, and W. Rigole, Streaming currents with nonaqueous solutions, J. Colloid Sci., 14, 1959, 330-337
CrossRef
D. Hildreth, Electrokinetic flow in fine capillary channels, J. Phys. Chem., 74, 1970, 2006-2015.
A.V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena, J. Colloid Interface Sci., 309, 2007, 194-224
E. Yariv, O. Schnitzer, I. Frankel, Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory, J. Fluid Mech., 685, 2011, 306-334.
CrossRef
S. Pennathur, J. G. Santiago, Electrokinetic transport in nanochannels. 1. Theory, Anal. Chem., 77, 2005, 6772-6781
S. Pennathur, J. G. Santiago, Electrokinetic Transport in Nanochannels. 2. Experiments, Anal. Chem., 77, 2005, 6782-6789
CrossRef
M. S. Chun, T. S. Lee, N. W. Choi, Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution, J. Micromech. Microeng., 15, 2005, 710-719
CrossRef
V. M. Barragán, C. Ruiz-Bauza, J. L. Imaña, Streaming potential across cation-exchange membranes in methanol-water electrolyte solutions, J. Colloid Interface Sci., 294, 2006, 473-481
D. Burgreen, F. Nakache, Electrokinetic flow in ultrafine capillary slits, J. Phys. Chem., 68, 1964, 1084-1091.
CrossRef
C. L. Rice, R. Whitehead, Electrokinetic flow in a narrow cylindrical capillary, J. Phy. Chem., 69, 1965, 4017-4024
CrossRef
S. Levine, J. Marriott, G. Neale, N. Epstein, Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials. J. Colloid Interface Sci., 52, 1975, 136-149.
S. Levine, J. Marriott, K. Robinson, Theory of electrokinetic flow in a narrow parallel-plate channel, J. Chem. Phys., 71, 1975, 1-11.
Z. Broz, N. Epstein, Electrokinetic Flow through porous media composed of fine cylindrical capillaries, J. Colloid Interface Sci., 56, 1976, 605-612
W. Olivares, T. L. Croxton, and D. A. McQuarria, Electrokirietic flow in a narrow cylindrical capillary, J. Phys. Chem., 84, 1980, 867-869
R. A. van Wagenen, J. D. Andrade, Flat plate streaming potential investigations: Hydrodynamics and Electrokinetic equivalency, J. Colloid Interface Sci., 76, 1980, 305-314
B. D. Bowen, Streaming potential in the hydrodynamic entrance region of cylindrical and rectangular capillaries, J. Colloid Interface Sci., 106, 1985, 367-376
W. R. Bowen, F. Jenner, Electroviscous effects in charged capillaries, J. Colloid Interface Sci., 173, 1995, 388-395
S. G. Bike, D. C. Prieve, Electrohydrodynamic lubrication with thin double layers, J. Colloid Interface Sci., 136, 1990, 95-112
H. Ohshima, T. Kondo, Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and Streaming Potential, J. Colloid Interface Sci., 135, 1990, 443-448
S. G. Bike, D. C. Prieve, Electrohydrodynamics of thin double layers: A model for the streaming potential profile, J. Colloid Interface Sci., 154, 1992, 87-96
V. M. Starov, Y. E. Solomentsev, Influence of gel layers on electrokinetic phenomena; 1. Streaming Potential, J. Colloid Interface Sci., 158, 1993, 159-165
H. Ohshima, Streaming potential across a charged membrane, J. Colloid Interface Sci., 164, 1994, 510-513
H. J. Keh, Y. C. Liu, Electrokinetic flow in a circular capillary with a surface charge layer, J. Colloid Interface Sci., 172, 1995, 222-229
J. Lyklema, M. Minor, On surface conduction and its role in electrokinetics, Colloids and Surfaces A: Physicochem. Eng. Aspects, 140, 1998, 33-41
CrossRef
J. Lyklema, Electrokinetics after Smoluchowski, Colloids and Surfaces A: Physicochem. Eng. Aspects, 222, 2003, 5 -14
CrossRef
R. J. Hunter, The significance of stagnant layer conduction in electrokinetics, Adv. Colloid Interface Sci., 100 -102, 2003, 153-167
CrossRef
D. Gillespie, A review of steric interactions of ions: Why some theories succeed and others fail to account for ion size, Microfluid. Nanofluid., 2014, (DOI: 10.1007/s10404-014-1489-5)
M. Kilic, M. Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-Layer charging. Phys. Rev. E, 75, 2007, 021502
CrossRef
L. Gong, J. Wu, L. Wang, K. Cao, Streaming potential and electroviscous effects in periodical pressure-driven microchannel flow. Phys. Fluids, 20, 2008, 063603(1-7).
A. Mansouri, C. Scheuerman, S. Bhattacharjee, D. Y. Kwok, L. W. Kostiuk, Transient streaming potential in a finite length microchannel, J. Colloid Interface Sci., 292, 2005, 567-580
J. Chakraborty, S. Ray, S. Chakraborty, Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices, Electrophoresis, 33, 2012, 419-425
CrossRef
A. Shenoy, J. Chakraborty, S. Chakraborty, Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus, Electrophoresis, 34, 2013, 691-699
CrossRef
C. L. A. Berli, M. L. Olivares, Electrokinetic flow of non-newtonian fluids in microchannels, J. Colloid Interface Sci., 320, 2008, 582-589.
A. Bandopadhyay, S. Chakraborty, Steric-effect-induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements, Langmuir, 27, 2011, 12243-12252
CrossRef
H. M. Park, J. Y. Lim, Streaming potential for microchannels of arbitrary cross-sectional shapes for thin electric double layers, J. Colloid Interface Sci., 336, 2009, 834-841
N. A. Mortensen, L. H. Olesen, H. Bruus, Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels, New J. Physics, 8, 2006, 37(1-15)
E. Brunet, A. Ajdari, Thin double layer approximation to describe streaming current fields in complex geometries: Analytical framework and applications to microfluidics, Phys. Rev. E, 73, 2006, 056306
CrossRef
J. D. Sherwood, E. Lac, Streaming potential generated by two-phase flow in a polygonal capillary, J. Colloid Interface Sci., 349, 2010, 417-423
C. Werner, H. Korber, R. Zimmermann, S. Dukhin, H.-J. Jacobasch, Extended electrokinetic characterization of flat solid surfaces, J. Colloid Interface Sci., 208, 1998, 329-346
A. Szymczyk, P. Fievet, M. Mullet, J. C. Reggiani, J. Pagetti, Comparison of two electrokinetic methods - electroosmosis and streaming potential - to determine the zeta-potential of plane ceramic membranes, J. Membrane Sci., 143, 1998, 189-195
CrossRef
W. R. Bowen, X. Cao, Electrokinetic effects in membrane pores and the determination of zeta-potential, J. Membrane Sci., 140, 1998, 267-273
CrossRef
A. Szymczyk, B. Aoubiza, P. Fievet, J. Pagetti, Electrokinetic phenomena in homogeneous cylindrical pores, J. Colloid Interface Sci., 216, 1999, 285-296
P. Fievet, A. Szymczyk, B. Aoubiza, J. Pagetti, Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores, J. Membrane Sci., 168, 2000, 87-100.
CrossRef
C. Werner, R. Zimmermann, T. Kratzmuller, Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity, Colloids and Surfaces A: Physicochem. Eng. Aspects, 192, 2001, 205-213
CrossRef
D. Erickson, D. Li, Streaming potential and steaming current methods for characterizing heterogeneous solid surface. J. Colloid Interface Sci., 237, 2001, 283-289.
F. Baldessari, J. G. Santiago, Electrokinetics in nanochannels: Part I. Electric double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci., 325, 2008, 526-538.
J. Jammati, H. Niazmand, M. Renksizbulut, Pressure-driven electrokinetic slip-flow in planar microchannels. Int. J. Thermal Sci., 49, 2010, 1165-1174.
CrossRef
H. M. Park, T. W. Kim, Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Lab Chip., 9, 2009, 291-296.
CrossRef
S. Chakraborty, Z. Duan, Y. S. Muzychka, K. D. Anand, Implications of hydrophobic interactions and consequent apparent slip phenomenon on the entrance region transport of liquids through microchannels, Phys. Fluids, 20, 2008, 043602.
CrossRef
C. Zhao, C. Yang, On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows. Colloids and Surfaces A: Physiochem. Eng. Aspects, 386, 2011, 191-194.
CrossRef
C. L. A. Berli, Theoretical modelling of electrokinetic flow in microchannel networks, Colloids and Surfaces A: Physicochem. Eng. Aspects, 301, 2007, 271-280.
CrossRef
J. Chakraborty, S. Chakraborty, Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing, Phys. Fluids, 23, 2011, 082004
CrossRef
Y. S. Choi, S. J. Kim, Electrokinetic flow-induced currents in silica nanofluidic channels, J. Colloid Interface Sci., 333, 2009, 672-678
A. Szymczyk, H. Zhu, B. Balannec, Pressure-driven ionic transport through nanochannels with inhomogenous charge distributions, Langmuir, 26, 2010, 1214-1220
CrossRef
H. Zhao, Streaming potential generated by a pressure-driven flow over superhydrophobic stripes, Phys. Fluids, 23, 2011, 022003
CrossRef
H. M. Park, Determination of the Navier slip coefficient of microchannels exploiting the streaming potential, Electrophoresis, 33, 2012, 906-915
CrossRef
S. Das, S. Chakraborty, Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements, Langmuir, 26, 2010, 11589-11596
CrossRef
J. Chakraborty, S. Chakraborty, Influence of hydrophobic effects on streaming potential, Phys. Rev. E, 88, 2013, 043007
CrossRef
R. Saini, A. Garg, D. P. J. Barz, Streaming potential revisited: The influence of convection on the surface conductivity, Langmuir, 30, 2014, 10950-10961
CrossRef
A. Bandopadhyay, J. Dhar, S. Chakraborty, Effects of solvent-mediated nonelectrostatic ion-ion interactions on a streaming potential in microchannels and nanochannels, Phys. Rev. E, 88, 2013, 033014
CrossRef
C. J. C. Biscombe, M. R. Davidson, D. J. E. Harvie, Electrokinetic flow in parallel channels: Circuit modelling for microfluidics andmembranes, Colloids and Surfaces A: Physicochem. Eng. Aspects, 440, 2014, 63- 73
CrossRef
L. H. Yeh, Y. Ma, S. Xue, S. Qian, Electroviscous effect on the streaming current in a pH-regulated nanochannel, Electrochemistry Communications, 48, 2014, 77-80
CrossRef
S. Mondal, S. De, Mass transfer of a neutral solute in porous microchannel under streaming potential, Electrophoresis, 35, 2014, 681-690
CrossRef
S. Das, S. Chakraborty, S. K. Mitra, Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization, Phys. Rev. E, 85, 2012, 051508
CrossRef
S. Das, A. Guha, S. K. Mitra, Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers, Anal. Chim. Acta, 804, 2013, 159- 166
CrossRef
P. Goswami, S. Chakraborty, Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip, Langmuir, 26, 2010, 581-590
CrossRef
F. Munshi, S. Chakraborty, Hydro-electrical energy conversion in narrow confinements in presence of transverse magnetic fields with electrokinetic effects, Phys. Fluids, 21, 2009, 122003
CrossRef
S. Chakraborty, Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements, Phy. Rev. Lett., 100, 2008, 097801
CrossRef
J. C. T. Eijkel, Liquid slip in micro- and nanofluidics: Recent research and its possible implications. Lab Chip, 7, 2007, 299-301
CrossRef
X. Xuan, Streaming potential and electroviscous effect in heterogeneous microchannels, Microfluid. Nanofluid., 4, 2008, 457-462
CrossRef
J. Chakraborty, R. Dey, S. Chakraborty, Consistent accounting of steric effects for prediction of a streaming potential in narrow confinements, Phys. Rev. E, 86, 2012, 061504
CrossRef
A. Bandopadhyay, S. Chakraborty, Combined effects of permittivity variations and finite ionic sizes on streaming potentials in nanochannels, Langmuir, 28, 2012, 17552-17563
CrossRef
S. Das, S. Chakraborty, Effect of conductivity variations within the electric double layer on streaming potential estimation in narrow fluidic confinements, Langmuir, 26, 2010, 11589-11596
CrossRef
C. Yang and D. Li, Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels, J. Colloid Interface Sci., 194, 1997, 95-107
C. Yang, D. Li, Analysis of electrokinetic effects on the liquid flow in rectangular microchannels, Colloids and Surfaces A: Physicochem. Eng. Aspects, 143, 1998, 339-353.
CrossRef
C. Yang, D. Li, J. H. Masliyah, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transfer, 41, 1998, 4229-4249
CrossRef
D. Li, Electro-viscous effects on pressure-driven liquid flow in microchannels, Colloids and Surfaces A: Physicochem. Eng. Aspects, 195, 2001, 35-57
CrossRef
L. Ren, D. Li, W. Qu, Electro-viscous effects on liquid flow in microchannels, J. Colloid Interface Sci., 233, 2001, 12-22
W. Olthuis, B. Schippers, J. C. T. Eijkel, A. van den Berg, Energy from streaming current and potential. Sens. Actuators B, 111-112, 2005, 385-389.
CrossRef
F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett., 6, 2006, 2232-2237.
CrossRef
F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett., 7, 2007, 1022-1025.
CrossRef
F. H. J. van der Heyden, D. Stein, C. Dekker, Streming currents in a single nanofluidic channel. Phys. Rev. Lett., 95, 2005,116104.
CrossRef
F. H. J. van der Heyden, D. Stein, K. Besteman, S. G. Lemay, C. Dekker, Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett., 96, 2006, 224502.
CrossRef
J. Yang, F. Lu, L. W. Kostiuk, D. Y. Kwok, Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microeng., 13, 2003, 963-970.
CrossRef
M. S. Chun, H. W. Kwak, Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field, Korea-Australia Rheology Journal, 15, 2003, 83-90
H. Daiguji, P. Yang, A. J. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett., 4, 2004, 2315-2321
CrossRef
H. Daiguji, Y. Oka, T. Adachi, K. Shirono, Theoretical study on the efficiency of nanofluidic batteries, Electrochemistry Communications, 8, 2006, 1796-1800
CrossRef
M. C. Lu, S. Satyanarayana, R. Karnik, A. Majumdar and C. C. Wang, A mechanical-electrokinetic battery using a nano-porous membrane, J. Micromech. Microeng., 16, 2006, 667-675
CrossRef
X. Xuan, D. Li, Thermodynamic analysis of electrokinetic energy conversion, J. Power Sources, 156, 2006, 677-684
CrossRef
A. Mansouri, S. Bhattacharjee, L. Kostiuk, High-power electrokinetic energy conversion in a glass microchannel array. Lab Chip, 12, 2012, 4033-4036
CrossRef
J. D. Sherwood, Y. Xie, A. van den Berg, J. C. T. Eijkel, Theoretical aspects of electrical power generation from two-phase flow streaming potentials, Microfluid. Nanofluid., 15, 2013, 347-359
CrossRef
C. C. Chang, R. J. Yang, Electrokinetic energy conversion in micrometer-length nanofluidic channels, Microfluid. Nanofluid., 9, 2010, 225-241
CrossRef
C. C. Chang, R. J. Yang, Electrokinetic energy conversion efficiency in ion-selective nanopores, Appl. Phys. Lett., 99, 2011, 083102
CrossRef
D. Gillespie, High energy conversion efficiency in nanofluidic channels, Nano Lett., 12, 2012, 1410-1416
CrossRef
A. Bandopadhyay, P. Goswami, S. Chakraborty, Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: An analytical approach, J. Chem. Phys., 139, 2013, 224503
CrossRef
C. Bakli, S. Chakraborty, Electrokinetic energy Conversion in nanofluidic channels: Addressing the loose ends in nanodevice efficiency, Electrophoresis, 2014 (DOI: 10.1002/elps.201400317)
A. Bandopadhyay, S. S. Hossain, S. Chakraborty, Ionic-size dependent electroviscous effects in ion-selective nanopores, Langmuir, 30, 2014, 7251-7258
CrossRef
S. Chanda, S. Sinha, S. Das, Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters, Soft Matter, 10, 2014, 7558
CrossRef
C. L. M. H. Navier, Memoirs de l'Academie Royale des Sciences de l'Institut de France, 1, 1823, 414.
Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett., 87, 2001, 096105
CrossRef
Y. Ren, D. Stein, Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology, 19, 2008, 195707.
CrossRef
C. Davidson, X. Xuan, Electrokinetic energy conversion in slip nanochannels, J. Power Sources, 179, 2008, 297-300
CrossRef
R. Chein, K. Tsai, L. Yeh, Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries, Electrophoresis, 31, 2010, 535-545
CrossRef
C. Davidson, X. Xuan, Effect of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. Electrophoresis, 29, 2008, 1125-1130.
CrossRef
A. Garai, S. Chakraborty, Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios, Electrophoresis, 31, 2010, 843-849
CrossRef
N. T. Nguyen, Y. Xie, L. J. de Vreede, A. van den Berg, J. C. T. Eijkel, Highly enhanced energy conversion from the streaming current by polymer addition, Lab Chip, 13, 2013, 3210-3216
CrossRef
C. L. A. Berli, Electrokinetic energy conversion in microchannels using polymer solutions, J. Colloid Interface Sci., 349, 2010, 446-448.
C. Zhao, C. Yang, Electrokinetics of non-Newtonian fluids: a review, Adv. Colloid Interface Sci., 201-202, 2013, 94-108.
CrossRef